ECE606: Solid State Devices Lecture 17 Schottky Diode

ECE606: Solid State Devices Lecture 17 Schottky Diode

ECE606: Solid State Devices Lecture 17 Schottky Diode Gerhard Klimeck [email protected] Klimeck – ECE606 Fall 2012 – notes adopted from Alam 1 Presentation Outline 1) Importance of metal-semiconductor junctions 2) Equilibrium band-diagrams 3) DC Thermionic current (simple derivation) 4) Intermediate Summary 5) DC Thermionic current (detailed derivation) 6) AC small signal and large-signal response 7) Additional information 8) Conclusions Reference : Semiconductor Device Fundamentals, Chapter 14, p. 477 Klimeck – ECE606 Fall 2012 – notes adopted from Alam 2 Metal-semiconductor Diode Symbols M N ND Metal Wire N Klimeck – ECE606 Fall 2012 – notes adopted from Alam 3 Applications of M-S Diode …. STM (scanning tunneling microscope) Detectors on semiconductor CNT (carbon nanotube) www.fz-juelich.de/ibn/index.php?index=674 Original Bipolar Transistors Originally, Gelena (PbS), Si as semiconductor and Phospor Bronze for metal (cat ’s whisker) Klimeck – ECE606 Fall 2012 – notes adopted from Alam 4 Presentation Outline 1) Importance of metal-semiconductor junctions 2) Equilibrium band-diagrams 3) DC Thermionic current (simple derivation) 4) Intermediate Summary 5) DC Thermionic current (detailed derivation) 6) AC small signal and large-signal response 7) Additional information 8) Conclusions Klimeck – ECE606 Fall 2012 – notes adopted from Alam 5 Topic Map Equilibrium DC Small Large Circuits signal Signal Diode Schottky BJT/HBT MOS Klimeck – ECE606 Fall 2012 – notes adopted from Alam 6 Drawing Band Diagram in Equilibrium… ∇•= −++ − − D qpnN( D N A ) Equilibrium ∂n 1 = ∇•J −r + g ∂t q N N N =µ E + ∇ J Nqn N qD N n DC dn/dt=0 Small signal dn/dt ~ jωtn ∂p 1 =− ∇•J −r + g Transient --- full sol. ∂t q P P P =µ E − ∇ J Pqp P qD P p Klimeck – ECE606 Fall 2012 – notes adopted from Alam 7 Band-Diagram 1. E F flat in equilibrium 2. E C/E V in Metal 3. Vacuum level in Metal N D 4. Ec/Ev in semiconductor 5. Vacuum level in semiconductor 6. Connect vacuum levels Vacuum level Φ 7. duplicate the connections M χ down to Ec/Ev EC EF Since N A is large, xp is negligible .. EV = NxAp Nx Dn Charge(metal) = charge(semiconductor) Klimeck – ECE606 Fall 2012 – notes adopted from Alam 8 Built-in Potential: bc @Infinity neglect qV bi Φ M χ Φ B ∆ ∆ + χ + = Φ =(Φ−χ ) − ∆ ≡ Φ − ∆ qV bi M qV bi M B N non- =Φ − k T ln D B B degenerate NC Klimeck – ECE606 Fall 2012 – notes adopted from Alam 9 Analytical Solution (Simple Approach ) Depletion Approximation E ρ qN D integrate Actual Xn x x Xn Q qN x E =D = − D n max ε ε QD = Area negligible Ks0 K s 0 QM =-QD NDXn integrate φ φB q Φ =qV E max bi C x Xn EV E x φ = − max n x max Xn 2 Notice how we neglect xp here, is Klimeck – ECE606 Fall 2012 – notes adopted from Alam there a proof? 10 Complete Analytical Solution + qN x E ()0 = D n ε Charg ks 0 e − qN M xp + x E ()0 = ? n ε - ks 0 Position x = p ⇒ ND xn NM xp E-field − + Position E(0) x E ( 0 ) x qV =n + p bi 2 2 Potentia 2 l qN x 2 qN x =D n + M p ε ε 2ks0 2 k s 0 Position Klimeck – ECE606 Fall 2012 – notes adopted from Alam 11 Depletion Regions ND xp xn ε ε = 2ks 0 NM 2 k s 0 1 NDxn N M xp x =V → V n ()+ bi bi qNNNDMD qN D ∞ 2 2 NM qN x qN M xp qV =D n + 2k ε N bi 2k ε 2 k ε x =s0 D V → 0 s 0s 0 p ()+ bi q NMN M N D This is why we can neglect xp Klimeck – ECE606 Fall 2012 – notes adopted from Alam 12 Presentation Outline 1) Importance of metal-semiconductor junctions 2) Equilibrium band-diagrams 3) DC Thermionic current (simple derivation) 4) Intermediate Summary 5) DC Thermionic current (detailed derivation) 6) AC small signal and large-signal response 7) Additional information 8) Conclusions Klimeck – ECE606 Fall 2012 – notes adopted from Alam 13 Topic Map Equilibrium DC Small Large Circuits signal Signal Diode Schottky BJT/HBT MOS Klimeck – ECE606 Fall 2012 – notes adopted from Alam 14 Band Diagram with Applied Bias… ∇•= −++ − − D qpnN( D N A ) Band diagram … ∂n 1 = ∇•J −r + g This works for doping-modulated ∂t q N N N Semiconductors. J =qnµ E + qD ∇ n N N N Does not work for heterostructures ∂p 1 (when the conduction band is not =− ∇•J −r + g ∂t q P P P continuous) =µ E − ∇ J Pqp P qD P p Metal-Semiconductor is a HS Need theory of thermionic Klimeck – ECE606 Fall 2012 – notes adopted from Alam emission 15 Depletion Regions with Bias ND xp xn 2kε N 2 k ε 1 x=s0 M V → s 0 () VV − n ()+ bi bi A qNNNDMD qN D Forward bias: x decrease 2kε N n x=s0 D V → 0 Reverse bias: x increase p ()+ bi n q NM N M N D Klimeck – ECE606 Fall 2012 – notes adopted from Alam 16 Band-diagram with Bias Forward Bias qV bi -V EC-EF VA qV bi EC-EF Reverse Bias VA EC-EF Klimeck – ECE606 Fall 2012 – notes adopted from Alam 17 I-V Characteristics N-type Forward Bias VA Metal Ec I Semi. EF EF M ESF 1,2,3 EV 4 – generation current I 5 – impact ionization Reverse Bias 6,7 EF M 4 1 – diffusion control 5 Ec 2 – ambipolar EF 3 – resistance drop ESF 6 – defects – trap assist 7 – Esaki EV Klimeck – ECE606 Fall 2012 – notes adopted from Alam 18 Current Flow Concept Barrier Barrier smaller Partition problem in The same! M<=S increased M=>S current qV -V 2 currents bi A E -E Φ C F unchanged! B M=>S S<=M VA Forward Bias qV Φ bi B Barrier EC-EF The same! Barrier bigger M=>S current M<=S decreased Φ unchanged! B q(V bi +V A) VA In Equilibrium: M=>S current EC-EF and Independent Reverse Bias are equal of bias! Klimeck – ECE606 Fall 2012 – notes adopted from Alam 19 Left Boundary Condition We use thermionic emission q(V bi -VA) because: EC 1. EC is not continuous here V 2. There’s no minority carriers! A J( V ===0) 0 J (0) − J (0) T A m→s s→ m (detailed balance) = ⇒ Jm→ s (0) J s→ m (0) J (V ) =J( V ) − J( V ) T A m→ s A s→ m A M=>S current = − independent of bias Jm→s (0) J s→ m(V A ) = − JVTA() J sm→ (0) JV smA → () Klimeck – ECE606 Fall 2012 – notes adopted from Alam 20 Semiconductor to Metal Flux V n −q bi = −s kT υ = J s→ m (0) q e th Jm→ s (0) J → (0) = m s 2 V− V Φ −q bi A q B n n − s kT m kT J→ ( V ) = − q e υ J → (V ) = − q e υ s m A th m s A 2 th M 2 n υ − qV bi qV A Only the ones = −s th kT × kT Only half of above the q e e them goes to 2 barrier goes to qVA the right the right = kT J s→ m (0) e qVA q(Vbi -VA) = kT Jm→ s (0) e VA EC-EF Φ n υ − qB qV A = − qm th M ekT e kT 2 −q Φ Φ qV qn υ mB A =− =m th M kT kT − JT J s→m(0)J s → m ( V A ) e e 1 Klimeck – ECE606 Fall 2012 – notes adopted from Alam 2 21 Diffusion vs. Thermionic Emission ∆n Fn Fp Check that both gives the same result for a diode… Thermionic Emission theory is a more general approach, can be used for device so small that no scattering F n occur (can’t use diffusion!). Fp Klimeck – ECE606 Fall 2012 – notes adopted from Alam 22 Intermediate Summary Schottky barrier diode is a majority carrier device of great historical importance. There are similarities and differences with p-n junction diode: for electrostatics, it behaves like a one-sided diode, but current, the drift-diffusion approach requires modification. The trap-assisted current, avalanche breakdown, Zener tunneling all could be calculated in a manner very similar to junction diode. Klimeck – ECE606 Fall 2012 – notes adopted from Alam 23 Presentation Outline 1) Importance of metal-semiconductor junctions 2) Equilibrium band-diagrams 3) DC Thermionic current (simple derivation) 4) Intermediate Summary 5) DC Thermionic current (detailed derivation) 6) AC small signal and large-signal response 7) Additional information 8) Conclusions Klimeck – ECE606 Fall 2012 – notes adopted from Alam 24 Energy Resolved Thermionic Flux 1 Energy < m*υ 2 Occupation 2 min ~ DOS (non-denegerate) will be bounced back −υ ∞ ∞ min Ω −() − β J= − qdk dkedk E E F υ s→m ∫ ∫ ∫ π 3 xy z x −∞ −∞ −∞ 4 Only movement in the υ x direction will contribute min to the current flux q(Vbi -VA) VA EC-EF x Klimeck – ECE606 Fall 2012 – notes adopted from Alam 25 Thermionic Flux from Semi to Metal .. E ∞ ∞ −υ min E Ω −()− β C E E F E J= − q dk dk dk e υ F sm→ ∫ ∫ ∫ π 3 xyz x −∞ −∞ −∞ 4 1 1 1 E− E =()EE− + ()EE−= mmm*2υ + *2 υ+ *2 υ + () EE − F CCF 2 xyz 2 2 C F ∞ ∞ −υ ** * (mυ 2+ mυ 2+ m υ 2 ) min υ υ υ − x y z β −()− β Ω dm( x) dm( y) dm( z ) = qe Ec E F e 2 υ ∫ ∫ ∫ π 3 x −∞ −∞ −∞ 4 ℏ ℏ ℏ 3m *υ 2 υ 2 υ 2 * ∞−y β ∞ − m* z β −υ − m* x β qΩ() m min −()E − E β 2 2 2 J= ec F ededυ υ de υ υ s→ m π 3ℏ 3 ∫y ∫ z ∫ x x 4 −∞ −∞ −∞ Klimeck – ECE606 Fall 2012 – notes adopted from Alam 26 Thermionic Current … 2q υ =()V − V min m* bi A 3m *υ 2 υ2 υ2 * ∞−y β ∞ − m* z β −υ − m* x β qΩ() m min −()E− E β 2 2 2 J= ec F ededυ υ de υυ s→ m π 3 3 ∫y ∫ z ∫ x x 4 ℏ −∞− ∞ −∞ 1 − − β π π e q(Vbi V A ) 2 * 2 π ()− − β β β 4 qm k 2 EF E C qV bi qVAq V A J→ = Te eAe = s m h3 0 β =−=qVA − JJT sm→ J ms → Ae0 ( 1) Klimeck – ECE606 Fall 2012 – notes adopted from Alam 27 Some insight of the Thermionic Current … Compare to the current of p-n diodes… β =−=qVA − JJT sm→ J ms → Ae0 ( 1) Schottky diode 2 2 D n Dp n β =−n i +i qV A − JT q () e 1 p-n diode Wp N A Wn N D Both of them depends exponentially on V A, however current of p-n diodes depends more on temperature (since ni depends strongly on Eg), where the Schottky diode doesn’t have that dependence.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    21 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us