Summary of Useful Formulae

Summary of Useful Formulae

ME 24-221 Thermodynamics I Some Useful Formulae 1 Control Mass Continuity Equation m constant First Law £ 2 ¡ 2 £ ¢ ¢ m V V ¤ 2 1 ¡ ¡ U ¡ U mg Z Z Q W 2 1 2 2 1 ¤ 1 2 1 2 Compression-expansion work 2 ¦¥ 1W2 PdV 1 For polytropic procees, PV n c , P V ¡ P V 2 2 1 1 W n § 1 1 2 1 ¡ n V 2 P1V1ln n 1 V1 Second Law 2 δ Q ¢ ¨¥ S2 ¡ S1 1 S2 gen 1 T For isothermal process 2 δQ Q ¥ 1 2 1 T T For reversible process 1S2 gen 0 For adiabatic process 1Q2 0 Therefore, for a reversible adiabatic process S2 ¡ S1 0 ¡ s2 s1 0 Therefore, a reversible adiabatic process is an isentropic process. 1 2 Control Volume 2.1 Steady State Steady Flow (SSSF) Continuity ∑m˙ i ¡ ∑m˙ e 0 i e First Law 2 2 ¢ ¢ ¢ ¢ ¢ V V ¡ ∑m˙ h i gZ ∑m˙ h e gZ Q˙ ¡ W˙ 0 © i © i i e e e cv cv i 2 e 2 Second Law Q˙ ¢ ¢ j ¡ ˙ ∑m˙ isi ∑m˙ ese ∑ Sgen 0 i e j Tj Reversible process S˙gen 0 Adiabatic process Q˙ 0 For one inlet-one outlet device, a reversible adiabatic process is therefore an isentropic process, with si se 2.2 Uniform State Uniform Flow (USUF) Continuity £ ¡ m ¡ m ∑m ∑m 2 1 ¤ i e i e First Law 2 2 2 2 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ V V V V ¡ ¡ m u 2 gZ ¡ m u 1 gZ ∑m h i gZ ∑m h e gZ Q W © © © 2 © 2 2 1 1 1 i i i e e e cv cv 2 2 i 2 e 2 Second Law t ˙ ¢ ¢ Q ¥ cv ¡ ¡ m2s2 m1s1 ∑misi ∑mese dt 1 S2 gen i e 0 T 3 Gibbs Equation ¢ T ds du Pdv dh ¡ vdP This equation holds true for all simple compressible substances. 2 4 Properties of Pure Substances 4.1 Vapor-Liquid Phase Equilibrium For a specific property φ (such as h,u,v,s etc) under the dome ¢ φ φ φ f x f g 4.2 Ideal Gas Ideal Gas Equations of State Pv RT du CvdT 2 ¥ u2 ¡ u1 CvdT 1 £ C T ¡ T if C is constant v 2 1 ¤ v dh CpdT 2 ¥ ¡ h2 h1 CpdT 1 £ C T ¡ T if C is constant p 2 1 ¤ p Specific Heats and Ideal Gas Constants Cp ¡ Cv R R R M Cp k Cv Entropy Relationships dT dP ds C ¡ R p T P 2 dT P ¥ ¡ ¡ 2 s2 s1 Cp Rln 1 T P1 T P 2 ¡ 2 Cpln Rln if constant Cp T1 P1 P ¡ s0 ¡ s0 Rln 2 otherwise T2 T1 P1 dT ¢ dv ds C R v T v 2 dT ¢ v ¥ ¡ 2 s2 s1 Cv Rln 1 T v1 T ¢ v 2 2 Cvln Rln if constant Cv T1 v1 3 Isentropic Process for Ideal Gas For variable specific heats P P 1 r1 P2 Pr2 v v 1 r1 v2 vr2 For constant specific heats Pvk constant P v k 1 2 © P2 v1 k 1 T P k 2 2 © T1 P1 T v k 1 2 1 © T1 v2 The above four relationships also hold for a reversible polytropic process with the polytropic exponent n replacing k. 4.3 Incompressible Substance Equation of State du dh CdT 2 ¥ ¡ ¡ u2 u1 h2 h1 CdT 1 £ C T ¡ T if C is constant 2 1 ¤ Entropy Relationships du ds T 2 dT ¥ s2 ¡ s1 C 1 T T Cln 2 if C is constant T1 C=constant can usually be assumed for incompressible substances. 4 5 Heat Engines, Heat Pumps and Refrigerators Thermal efficiency of heat engine W η net th QH Q ¡ Q H L QH Coefficient of Performance (C.O.P) of Heat Pump Q β H Wnet Q H QH ¡ QL Coefficient of Performance (C.O.P) of Refrigerator Q β L Wnet Q L QH ¡ QL Carnot Cycle Q T H H QL TL T η ¡ L th 1 TH T β H TH ¡ TL T β L TH ¡ TL 6 Isentropic Efficiency of Engineering Devices w η turbine ws w η s compressor w 2 V 2 η e nozzle 2 Ves 2 5 7 Irreversibility and Availability Availability: ¡ ¡ Ψ ¡ h T s h T s 0 re f 0 re f Irreversibility: ˙ ˙ I T0Sgen ˙ ˙ Work in an SSSF process with heat gain QH from TH and heat loss Q0 to T0: T ¢ ¡ ¡ 0 ¡ W˙ Q˙ 1 m˙ Ψ Ψ I˙ net H © i e TH Second Law Efficiency (Effectiveness) Turbine: W˙ η net 2 Ψ ¡ Ψ m˙ i e Compressor: Ψ ¡ Ψ m˙ η i e 2 W˙ net 8 Power and Refrigeration Cycles 8.1 Ideal Rankine Cycle p=c p=c 3 T 2 1 4 s 1-2:Isentropic compression in pump 2-3: Constant pressure heat addition in boiler 3-4: Isentropic expansion in turbine 4-1: Constant pressure heat rejection in condenser Working fluid is usually water or other two-phase substance 6 Work and heat transfer formulae: ¡ wp h1 h2 £ v P ¡ P 1 1 2 ¤ ¡ qb h3 h2 ¡ wT h3 h4 ¡ qc h1 h4 Also s1 s2 s3 s4 8.2 Ideal Air Standard Brayton Cycle p=c 3 T 2 p=c 4 1 s 1-2:Isentropic compression in compressor 2-3: Constant pressure heat addition in heat exchanger 3-4: Isentropic expansion in turbine 4-1: Constant pressure heat rejection in heat exchanger Working fluid idealized to be air Work and heat transfer formulae: ¡ wC h1 h2 ¡ qh h3 h2 wT h3 ¡ h4 ¡ qc h1 h4 Also s1 s2 s3 s4 7 For constant Cp £ w C T ¡ T C p 1 2 ¤ £ q C T ¡ T h p 3 2 ¤ £ w C T ¡ T T p 3 4 ¤ £ q C T ¡ T c p 1 4 ¤ Also k 1 T P k 2 2 © T1 P1 k 1 T P k 4 4 © T3 P3 For variable Cp P P r2 2 Pr1 P1 P P r4 4 Pr3 P3 Thermal efficiency of Brayton cycle (For constant Cp) T η ¡ 1 th 1 T2 k 1 P k 1 ¡ 1 © P2 8.3 Ideal Air Standard Otto Cycle v =c 3 T 2 v = c 4 1 s Otto cycle is a piston-cylinder cycle (control mass) Models spark ignition (SI) engines 1-2:Isentropic compression 8 2-3: Constant volume heat addition 3-4: Isentropic expansion 4-1: Constant volume heat rejection Working fluid idealized to be air Process 1-2: s1 s2 k 1 T P k 2 2 i f C constant © p T1 P1 T V k 1 2 1 i f C constant © p T1 V2 ¡ ¡ u2 u1 1w2 £ C T ¡ T i f C constant v 2 1 ¤ p Process 2-3: ¡ u3 u2 2q3 £ C T ¡ T i f C constant v 3 2 ¤ p Process 3-4: s3 s4 k 1 T P k 4 4 i f C constant © p T3 P3 T V k 1 4 3 i f C constant © p T3 V4 ¡ ¡ u4 u3 3w4 £ C T ¡ T i f C constant v 4 3 ¤ p Process 4-1: ¡ u1 u4 1q4 £ C T ¡ T i f C constant v 1 4 ¤ p Thermal efficiency of Otto cycle (For constant Cp) T η ¡ 1 th 1 T2 V 1 k 1 ¡ 1 © V2 1 k ¡ 1 rv where rv is the compression ratio. Mean Effective Pressure: w mep net ¡ v1 v2 9 8.4 Ideal Air Standard Diesel Cycle 3 p=c 2 T v = c 4 1 s Diesel cycle is a piston-cylinder cycle (control mass) Models compression ignition (CI) engines 1-2:Isentropic compression 2-3: Constant pressure heat addition 3-4: Isentropic expansion 4-1: Constant volume heat rejection Working fluid idealized to be air Process 1-2: s1 s2 k 1 T P k 2 2 i f C constant © p T1 P1 T V k 1 2 1 i f C constant © p T1 V2 ¡ u2 ¡ u1 1w2 £ C T ¡ T i f C constant v 2 1 ¤ p Process 2-3: h3 ¡ h2 2q3 £ C T ¡ T p 3 2 ¤ Process 3-4: s3 s4 k 1 T P k 4 4 i f C constant © p T3 P3 T V k 1 4 3 i f C constant © p T3 V4 ¡ ¡ u4 u3 3w4 £ C T ¡ T i f C constant v 4 3 ¤ p 10 Process 4-1: u1 ¡ u4 1q4 £ C T ¡ T i f C constant v 1 4 ¤ p Thermal efficiency of Otto cycle (For constant Cp) £ C T ¡ T v ¤ ¡ 4 1 η 1 £ th C T ¡ T p 3 2 ¤ 8.5 Ideal Vapor Refrigeration Cycle p=c p=c 2 T 3 1 4 s Simply Rankine cycle run backwards Note how points 1,2,3,4 have been shifted 1-2:Isentropic compression in compressor 2-3: Constant pressure heat loss at high-temperature source 3-4: Isentropic expansion in expansion valve 4-1: Constant pressure heat gain in evaporator Working fluid is usually refrigerant or other two-phase substance 11.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    11 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us