Fourier Transform.Pdf

Fourier Transform.Pdf

ECE 307 Fourier Transform Z. Aliyazicioglu Electrical & Computer Engineering Dept. Cal Poly Pomona Fourier Transform The Fourier transform (FT) is the extension of the Fourier series to nonperiodic signals. The Fourier transform of a signal exist if satisfies the following condition. ∞ 2 ∫ xt() dt< ∞ −∞ ∞ The Fourier transform X()ω = ∫ xte ()− jtω dt −∞ The inverse Fourier transform (IFT) of X(ω) is x(t)and given by 1 ∞ x()tXed= ∫ (ω ) jtω ω 2π −∞ 1 Fourier Transform Also, The Fourier transform can be defined in terms of frequency of Hertz as ∞ X()fxtedt= ∫ () − jft2π −∞ and corresponding inverse Fourier transform is ∞ x()tXfedf= ∫ () jft2π −∞ Fourier Transform Example: Determine the Fourier transform of a rectangular pulse shown in the following figure x(t) h a /2 ωωaa − jj − jtω h Xhedtee()ω ==− 22 ∫ − jω t −a /2 ωa -a/2 a/2 sin( ) 2haω ==sin( ) ha 2 ω 2 ωa 2 ωa = hasinc 2π 2 Fourier Transform Example: To find in frequency domain, a /2 22ππfa fa − jj − jft2π h Xf()==∫ he dt e22 − e −a /2 − jf2π h = 1, hfasin(π ) ==sin(πfa ) ha a = 1 ππffa ω = hasinc fa X()ω = 2sinc () 2π >> h=1; >> a=1; >> f=-3.5:0.01:3.5; >> w=2*pi*f; >> x=h*a*sinc(w*a/(2*pi)); >> plot (w,x) >> title ('X(\omega)') >> xlabel('\omega'); >> Fourier Transform h = 1, a = 2 ω2 X()ω = 2sinc 2π >> h=1; >> a=1; >> f=-3.5:0.01:3.5; >> w=2*pi*f; >> x=abs(h*a*sinc(w*a/(2*pi))); >> subplot (2,1,1) >> plot (w,x) >> title ('|X(\omega)|') >> xlabel('\omega') >> xp=phase(h*a*sinc(w*a/(2*pi))); >> subplot (2,1,2) >> plot (w,xp) >> title ('phase X(\omega)') >> xlabel('\omega') 3 Fourier Transform Example Determine the Fourier transform of the Delta function δ(t) ∞ Xtedte()ωδ===∫ ()−−jtωω j0 1 −∞ X(ω) 1 ω Fourier Transform Properties of the Fourier Transform We summarize several important properties of the Fourier Transform as follows. 1. Linearity (Superposition) xt()⇔ X (ω ) If xt11()⇔ X (ω ) and 22 Then, ax11() t+⇔+ ax 2 2 () t aX 1 1 (ω ) aX 2 2 (ω ) Proof: ∞∞∞ axt()+= axte ()−−jtωω dta xte () jt dta + xte () − jt ω dt ∫∫∫[]11 2 2 1 1 2 2 −∞ −∞ −∞ =+aX11()ωω aX 2 2 () 4 Fourier Transform Properties of the Fourier Transform 2. Time Shifting If xt()⇔ X (ω ) − jωt0 Then, xt()−⇔ t0 X ()ω e Proof: Let τ =−tt0 then tt= τ + 0 and dt= dτ ∞∞ jt() xt()−= t e− jtω dt x ()τ e−+ωτ 0 dτ ∫∫0 −∞ −∞ ∞ jt = exed− ω 0 ∫ ()τ − jωτ τ −∞ jt = eX− ω 0 ()ω Fourier Transform Let yt()=− xt ( t0 ) j tjt YXeXee()ωω== ()−−ω 00 () ωjX∠ ()ω ω = Xe()ω jX(())∠−ωω t0 Ye()ωωjY∠ ()ω = Xe () j(())∠−Xtωω0 Therefore, the amplitude spectrum of the time shifted signal is the same as the amplitude spectrum of the original signal, and the phase spectrum of the time-shifted signal is the sum of the phase spectrum of the original signal and a linear phase term. 5 Fourier Transform Example: Determine the Fourier transform of the following time shifted rectangular pulse. x(t) h a ωa − jω Xhae()ω = sinc 2 2π t 0 a >> h=1; >> a=1; >> f=-3.5:0.01:3.5; >> w=2*pi*f; >> x=abs(h*a*sinc(w*a/(2*pi)).*exp(- j*w*1/2)); >> subplot (2,1,1) >> plot (w,x) >> title ('|X(\omega)|') >> xlabel('\omega') >> xp=phase(h*a*sinc(w*a/(2*pi)).*exp(- j*w.*1/2)); >> subplot (2,1,2) >> plot (w,xp) >> xlabel('\omega') >> title ('phaseX(\omega)') Fourier Transform 3. Time Scaling If xt()⇔ X (ω ) then 1 ω xat()⇔ X () aa Proof: Let τ = at then ta= τ / and dt= (1/ a ) dτ If , a>0 then If , a<0 then ∞∞ω − j τ ∞∞ω − jtω 1 − j τ 1 x()at e dt= x ()τ ea dτ xate()− jtω dt= x ()ττ ea d ∫∫ ∫∫a −∞ −∞ a −∞ −∞ ∞ ω 1 ω 11− j τ ω = X() ==∫ xe()ττa d X ( ) aa aaa−∞ 6 Fourier Transform Example. if , xt () ⇔ X ( ω ) then find the Fourier transform of the following signals 1 −ω xt(2)−⇔ X ( ) a. 22 b. xt(/5)⇔ 5 X (5)ω 1 −ω c. xt(5(−− 2)) ⇔ X ( ) e− jω 2 55 Example: Find the Fourier transform of the following signal. ω xt11()=∏ () t ⇔ X (ω ) = sinc a. 2π 11ω ω xt() (5) t X ( ) X ( ) sinc b. 221=∏ ⇔ω = = 555 10π c. ω xt331()=∏ ( t /5) ⇔ X (ωω ) = 5 X (5) = 5sinc 0.4π Fourier Transform 4. Duality (Symmetry) If xt()⇔ X (ω ) then Xt()⇔− 2π x (ω ) or X()txf⇔ (− ) Proof: Since t and ω are arbitrary variables in the inverse Fourier transform 1 ∞ x()tXed= ∫ (ω ) jtω ω 2π −∞ we can replace ω with t and t with - ω to get ∞ 1 − jtω Therefore, xXtedt()−=ω ∫ () 2π −∞ ∞ F{}Xt()==−∫ Xte ()− jtω dt 2π x (ω ) −∞ 7 Fourier Transform Similarly, if we can replace f with t and t with -f in the inverse Fourier transform ∞ x()tXfedf= ∫ () jft2π −∞ to get ∞ x()−=fXtedf∫ ()− jft2π −∞ Therefore, F{Xt()} = x (− f ) Fourier Transform Example: xt()=⇔δ () t X (ω ) = 1 Applying symmetry property, xt()=⇔ 1 X (ω ) = 2πδ ( −= ω ) 2 πδ ( ω ) (δ () ω is even function) or xt()=⇔ 1 Xf () =−=δ ( f )δ () f Example: ta ω xt()=⇔= rect X (ω ) a sinc a 2π ta −ω ω xt()=⇔== a sinc X (ωπ ) 2 rect 2 π rect 2π aa a Let c = then ac= 2π 2π ωω1 x() t=⇔== a sinc() ct X (ωπ ) 2 rect rect 22πcc π c 8 Fourier Transform Time Reversal If xt()⇔ X (ω ) then xt()−⇔− X (ω ) Proof: Let −=t τ . Then t = −τ and dt= − dτ ∞∞ ∫∫xtedt()−=−=−−−−jtωωτ x ()τ e j() dτω X ( ) −∞ −∞ Fourier Transform Frequency Shifting If xt()⇔ X (ω ) then − jtωc xte()⇔− X (ω ωc ) Proof: ∞∞ xte()jtωωωcc e− jtω dt==− xte ()−− j() t dt X (ω ω ) ∫∫ c −∞ −∞ 9 Fourier Transform Example: Determine the Fourier transform of cos ω c t and sinωct 11 xt()==+ cosω t ejtωωcc e− jt ⇔=−++ X (ωπδωωδωω )[] ( ) ( ) ccc22 or 11 1 x()tteeXfffff==+ cosωδδjtωωcc− jt ⇔=−++ ()[] ( ) ( ) ccc22 2 X(f) 1/2 -fc fc f The phase spectrum is zero everywhere. Fourier Transform 11jtωωcc− jt xt()== sinωc t e − e ⇔=−−−+ X (ωπδωωδωω ) j [] (cc ) ( ) 22jj 11 − j x()ttee== sinωδδjtωωcc −− jt ⇔= Xfffff ()[] ( −−+ ) ( ) c 22jj 2cc |X(f)| 1/2 -fc fc f θ(f) π/2 fc -fc f -π/2 10 Fourier Transform 7. Modulation If xt()⇔ X (ω ) then 1 xt( )cos(ωccc t )⇔−++[] X (ωω ) X ( ωω ) 2 Proof: ∞∞ 1 jt jt xt()cos(ω te )−−jtωω dt=+ xt () eωωcc e e jt dt ∫∫c −∞ −∞ 2 ∞∞ 1 −−jt()ωω −+ jt () ωω =+ xte()cc dt xte () dt 2 ∫∫ −∞ −∞ 1 =−++[]XX()()ωωcc ωω 2 Fourier Transform 8. Time Differentiation: If xt()⇔ X (ω ) then General case n dx() t dxt() n ⇔ jXω ()ω n ⇔ ()()jXω ω dt dt Proof: Taking the derivative of the inverse Fourier transform 1 ∞ x()tXed= ∫ (ω ) jtω ω 2π −∞ we obtain dx() t 1 ∞ = ∫ jωXed()ωωjtω dt 2π −∞ Therefore dx() t ⇔ jXω ()ω dt 11 Fourier Transform 9. Time Differentiation: If xt()⇔ X (ω ) then General case dXn ()ω dX() jω txtnn()⇔ j tx() t⇔ j dω n dω Proof: Taking derivative of Fourier Transform ∞ − jtω X()ω = ∫ xte () dt with respect to ω, we obtain −∞ dX()ω ∞ =−∫ ()()jtxte− jtω dt dω −∞ dX() jω Therefore tx() t⇔ j dω Fourier Transform 10 Conjugate If xt()⇔ X (ω ) then xt**()⇔− X (ω ) Proof: * ∞∞ *()*−−−jtωω j t ∫∫xte() dt= xte () dt=− X (ω ) −∞ −∞ If x(t) is real x * () txt = () so that XX()ω = * (−ω ) 12 Fourier Transform 11. Convolution If xt()⇔ X (ω ), ht () ⇔ H ( ω ) , and yt () ⇔ Y (ω ) ∞ yt()==− ht ()* xt ()∫ h (τ ) xt (ττ ) d −∞ YHX()ω = ()()ωω Proof: ∞∞ − jtω Yhxtdedt()ωτττ=−∫∫ ()( ) −∞ −∞ Interchanging the order of integration, we obtain ∞∞ ∞∞ −−jjωτ ωτ Yhxtedtd()ω =− ()τττ ( )− jtω YhXedXhed()ω ==∫∫ ()()τω τ () ω () τ τ ∫∫−∞ −∞ −∞ −∞ = XH()()ωω Fourier Transform 12. Multiplication xt()⇔ X (ω ) If 11, and xt 22 () ⇔ X (ω ) 11∞ x ()tx () t⇔=− X (ωω )* X ( ) X ( vX ) ( ω vdv ) 12 1 2∫ 1 2 22ππ−∞ or ∞ x ()tx () t⇔=− X ()* f X () f X ( vX ) ( f vdv ) 12 1 2∫ 1 2 −∞ 13 Fourier Transform 13. Parseval’s Theorem If xt11()⇔ X (ω ), then total normalized(based on one ohms resistor) energy E of and x(t) is given by ∞∞∞ 2221 ExtdtXd==∫∫∫() (ωω ) = Xfdf () −∞2π −∞ −∞ Proof ∞∞ ∞∞ 2 ** 1 − jtω x()tdtxtxtdtxtXeddt== () () () (ωω ) ∫∫ ∫∫2 −∞ −∞ −∞ π −∞ Interchanging the order of integration, we obtain Fourier Transform Proof (cont) ∞∞∞ 2 1 * − jtω x()tdt= X (ω ) xtedtd () ω ∫∫∫2 −∞π −∞ −∞ 1 ∞ = ∫ XXd* ()()ωωω 2π −∞ ∞ 1 2 = ∫ Xd()ωω 2π −∞ 14.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    14 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us