Thermal Physics Interactions and Implications

Thermal Physics Interactions and Implications

Northeastern Illinois University Thermal Physics Interactions and Implications Greg Anderson Department of Physics & Astronomy Northeastern Illinois University Spring 2020 c 2004-2020 G. Anderson Thermal Physics – slide 1 / 47 Northeastern Illinois Overview University Temperature Paramagnetism Thermal Equilibrium & Temperature Pressure The Thermodynamic Identity Diffusive Equilibrium c 2004-2020 G. Anderson Thermal Physics – slide 2 / 47 Northeastern Illinois Statistical Mechanics University Fundamental assumption of statistical mechanics: All accessible microstates of a system are equally likely. Thus, the probability of finding the system in a macrostate q: P ∝ Ω(q) Any large state in thermal equilibrium will be found in the macrostate q of greatest multiplicity Ω(q). Given Boltzmann’s definition of entropy: S ≡ k lnΩ (entropy) The entropy of an isolated system always increases: Thermal Equilibrium: The spontaneous flow of energy stops when a system is at or near its most likely macrostate. c 2004-2020 G. Anderson Thermal Physics – slide 3 / 47 Northeastern Illinois University Statistical Mechanics Temperature Entropy ES Entropy Plot (NA = 150, NB = 150, q = 12) Multiplicities of Einstein Solids Temperature from Entropy Temperature Entropy and Heat Paramagnetism Thermal Equilibrium & Temperature Pressure The Thermodynamic Identity Diffusive Equilibrium c 2004-2020 G. Anderson Thermal Physics – slide 4 / 47 Northeastern Illinois Entropy Plot (NA = 200, NB = 100, q = 12) University S = k lnΩ. In equilib.: ∂S = ∂S = 0. ∂SA = ∂SB = 1 . ∂qA ∂UA ∂UA ∂UB T 60 S 50 k 40 30 B T = A 20 T SA SB Entropy10 in Units of TA <TB TA >TB 0 0 1 2 3 4 5 6 7 8 9101112 qA c 2004-2020 G. Anderson Thermal Physics – slide 5 / 47 Northeastern Illinois Entropy Plot (NA = 150, NB = 150, q = 12) University S = k lnΩ. In equilib.: ∂S = ∂S = 0. ∂SA = ∂SB = 1 . ∂qA ∂UA ∂UA ∂UB T 60 S 50 k B 40 T = A 30 T 20 SA SB Entropy in Units of 10 TA <TB TA >TB 0 0 1 2 3 4 5 6 7 8 9101112 qA c 2004-2020 G. Anderson Thermal Physics – slide 6 / 47 Northeastern Illinois Multiplicities of Einstein Solids University qA ΩA SA/k qB ΩB SB/k Ω S/k 0 1 0 100 2.8 × 1081 187.5 2.8 × 1081 187.5 1 300 5.7 99 9.3 × 1080 186.4 2.8 × 1083 192.1 2 45150 10.7 98 3.1 × 1080 185.3 1.4 × 1085 196.0 . 11 5.3 × 1019 45.4 89 1.1 × 1076 175.1 5.9 × 1095 220.5 12 1.4 × 1021 48.7 88 3.4 × 1075 173.9 4.7 × 1096 222.6 13 3.3 × 1022 51.9 87 1.0 × 1075 172.7 3.5 × 1097 224.6 . 59 2.2 × 1068 157.4 41 3.1 × 1046 107.0 6.7 × 10114 264.4 60 1.3 × 1069 159.1 40 5.3 × 1045 105.3 6.9 × 10114 264.4 61 7.7 × 1069 160.9 39 8.8 × 1044 103.5 6.8 × 10114 264.4 . 100 1.7 × 1096 221.6 0 1 0 1.7 × 1096 221.6 Table 1: Macrostates, multiplicities, and entropies of a system of two Einstein solids, one with 300 oscillators and the other with 200, sharing a total of 100 units of energy. c 2004-2020 G. Anderson Thermal Physics – slide 7 / 47 Northeastern Illinois Temperature from Entropy University A theoretical definition of temperature: ∂S −1 1 ∂S T ≡ or ≡ ∂U T ∂U N,V Example: Einstein solid at large temperature U = ǫq: ∼ N S/k = lnΩ ∼ (q + N)ln q +(q + N) q − N ln N − q ln q ∼ N ln q/N + N + O(N 2/q) ∼ qe ∼ N ln N ∼ Ue e ∼ N ln Nǫ = N ln U + N ln Nǫ Active Learning: Show that U = NkT c 2004-2020 G. Anderson Thermal Physics – slide 8 / 47 Northeastern Illinois Entropy and Heat University At constant V , N: dU d¯Q dT dS = = = C T T V T The increase in entropy: Tf Tf dT Tf ∆S = dS = C ∼ C ln V T V T ZTi ZTi i c 2004-2020 G. Anderson Thermal Physics – slide 9 / 47 Northeastern Illinois University Statistical Mechanics Temperature Paramagnetism Paramagnetism Two State Paramagnet Two State Paramagnet (s = 1/2) Entropy: Two Paramagnetism State Paramagnet Temperature of a Paramagnet Plot: S(U) Negative Temperature Plot: S(T ) Plot: U(T ) Plot: CB (T ) Plot: M(T ) Plot: M(T ) II Plot: S(U) Negative Temperature Plot: S(T ) Plot: U(T ) Plot: CB (T ) Curie’s c 2004-2020 Law G. Anderson Thermal Physics – slide 10 / 47 Northeastern Illinois Paramagnetism University Paramagnet: a material in which constituent particles behave like tiny compass needles which line up parallel to an externally applied magnetic field. c 2004-2020 G. Anderson Thermal Physics – slide 11 / 47 Northeastern Illinois Two State Paramagnet University Consider N, identical spin-1/2 dipoles, e.g. electrons: Electron Spin: ↓ ↑ ↑ N↑ = spin up, N↓ = spin down ↑ ↑ ↓ N electrons: ↑ ↓ ↑ N = N↑ + N↓ The total energy of the system is a function of N↑. Multiplicity of states: N N! N! Ω= = = N N !(N − N )! N !N ! ↑ ↑ ↑ ↑ ↓ c 2004-2020 G. Anderson Thermal Physics – slide 12 / 47 Northeastern Illinois Two State Paramagnet (s =1/2) University +µB B ↑ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↑··· U −µB N = N↑ + N↓ Total Energy| {z } U = µB (N↓ − N↑)= µB (N − 2N↑)= −M · B Magnetization, M: U M = µ (N − N )= − ↑ ↓ B Multiplicity N N! N! Ω= = = N N !(N − N )! N !N ! ↑ ↑ ↑ ↑ ↓ c 2004-2020 G. Anderson Thermal Physics – slide 13 / 47 Northeastern Illinois Entropy: Two State Paramagnet University Multiplicity N N! N! Ω(N )= = = ↑ N N !(N − N )! N !N ! ↑ ↑ ↑ ↑ ↓ Using Stirling’s approximation and S = k lnΩ: S ≈ N ln N − N↑ ln N↑ − (N − N↑)ln(N − N↑) − N + N↑ + N↓ ≈ N ln N − N↑ ln N↑ − (N − N↑)ln(N − N↑) c 2004-2020 G. Anderson Thermal Physics – slide 14 / 47 Northeastern Illinois Entropy: Two State Paramagnet University Using Stirling’s approximation and S = k lnΩ: S ≈ N ln N − N↑ ln N↑ − (N − N↑)ln(N − N↑) − N + N↑ + N↓ ≈ N ln N − N↑ ln N↑ − (N − N↑)ln(N − N↑) The energy of a two state paramagnet is: U = µB (N↓ − N↑)= µB (N − 2N↑) From which we can write: 1 U 1 U N = N − , N = N + ↑ 2 µB ↓ 2 µB Entropy in terms of U: 2N U N − (U/µB) S/k ≈ N ln + ln 2 − 2 2µB N +(U/µB) N (U/µB) ! c 2004-2020 G. Anderson Thermal Physics – slide 14 / 47 p Northeastern Illinois Entropy: Two State Paramagnet University Entropy in terms of U: 2N U N − (U/µB) S/k ≈ N ln + ln 2 − 2 2µB N +(U/µB) N (U/µB) ! From the definitionp of temperature: ∂S k N − U/µB T −1 = = ln ∂U 2µB N + U/µB V,N c 2004-2020 G. Anderson Thermal Physics – slide 14 / 47 Northeastern Illinois Entropy: Two State Paramagnet University From the definition of temperature: ∂S k N − U/µB T −1 = = ln ∂U 2µB N + U/µB V,N Starting with the previous expression 1 1 N − U/µB = ln kT 2µB N + U/µB Multiply by 2µB and exponentiate to find N − U/µB e2µB/kT = N + U/µB Solving for U 1 − e2µB/kT µB U = NµB = −NµB tanh 1+ e2µB/kT kT c 2004-2020 G. Anderson Thermal Physics – slide 14 / 47 Northeastern Illinois Temperature of a Paramagnet University Entropy S ≈ N ln N − N↑ ln N↑ − (N − N↑)ln(N − N↑) Temperature 1 ∂S ∂N ∂S 1 ∂S ≈ = ↑ = − T ∂U ∂U ∂N 2µB ∂N N,B ↑ ↑ In terms of U 1 k N − U/µB = ln T 2µB N + U/µB Solving for U µB U = −NµB tanh kT c 2004-2020 G. Anderson Thermal Physics – slide 15 / 47 Northeastern Illinois Entropy of a Paramagnet S(U) University T −1 = ∂S/∂U S/k ∂U/∂S = T −N 0 N U/µB 2N U N − (U/µB) S/k ∼ N ln + ln 2 − 2 2µB N +(U/µB) N (U/µB) ! c 2004-2020 G. Anderson p Thermal Physics – slide 16 / 47 Northeastern Illinois Negative Temperature University Negative temperature requires: • Thermal equilibrium • Requires a finite upper bound on energy spectrum. e.g., nuclear paramagnets. • System must be energetically isolated from pos. temp. states. Understanding negative temperature • From Inverted population e.g. N↓ >N↑. • Negative temps. correspond to higher energies. They are “hotter” than positive temperatures. Entropy is more fundamental than temperature. c 2004-2020 G. Anderson Thermal Physics – slide 17 / 47 Northeastern Illinois Entropy of a Paramagnet S(T ) University 1 S Nk 0 0 1 2 3 4 x = µB/kT S/(Nk) = ln2(cosh x) − x tanh x c 2004-2020 G. Anderson Thermal Physics – slide 18 / 47 Northeastern Illinois Energy of a Paramagnet U(T ) University µB U = −NµB tanh kT 1 0 U NµB -1 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 τ = kT/µB c 2004-2020 G. Anderson Thermal Physics – slide 19 / 47 Northeastern Illinois Heat capacity of a spin-1/2 paramagnet University Heat capacity at constant magnetic field: ∂U ∂NµB tanh(µB/kT ) (µB/kT )2 CB = = − = Nk ∂T ∂T cosh2(µB/kT ) B B 0.4 Schottky anomaly 0.3 CB 0.2 0.1 0 01234567 τ = kT/µB c 2004-2020 G. Anderson Thermal Physics – slide 20 / 47 Northeastern µB Illinois Magnetization M = Nµ tanh University kT 1 ) M/Nµ 0 Curie’s Law (T ≫ µB/k) ∼ µB M ∼ Nµ kT Magnetization ( -1 -3 -2 -1 0 1 2 3 x = µB/kT c 2004-2020 G.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    53 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us