
04/11/2011 Modeling and dynamic analysis of offshore wind farms in France: Impact on power system stability KTH Master Thesis report number Alexandre Henry Examiner at KTH Dr. Luigi Vanfretti Supervisors at KTH Dr. Luigi Vanfretti and Camille Hamon Supervisor at EDF Dr. Bayram Tounsi Laboratory Electric Power Systems School of Electrical Engineering KTH, Royal Institute of Technology Stockholm, November 2011 Accessibility : .. Front page Page I / III ... Modeling and dynamic analysis of offshore wind farms in France: Impact on KTH EPS power system stability - EDF R&D Abstract Alexandre Henry Page 1 / 90 KTH Master Thesis Modeling and dynamic analysis of offshore wind farms in France: Impact on KTH EPS power system stability - EDF R&D Nomenclature EWEA : European Wind Energy Association UK : United Kingdom EU : European union AC : Alternating current DC : Direct current HVAC : High Voltage Alternating Current HVDC : High Voltage Direct Current PCC : Point of Common Coupling TSO : Transmission System Operator RTE : Réseau de transport d’électricité (French TSO) XLPE : cross linked polythylene insulated VSC : Voltage source converter LCC : Line commutated converter FACTS : Flexible AC Transmission System SVC : Static Var Compensator DFIG : Double Fed Induction Generator MVAC : Medium Voltage Alternating Current ENTSO-E : European Network of Transmission System Operators for Electricity HFF : High Frequency Filter FRT : Fault Ride Through Alexandre Henry Page 2 / 90 KTH Master Thesis Modeling and dynamic analysis of offshore wind farms in France: Impact on KTH EPS power system stability - EDF R&D Table of contents ABSTRACT .............................................................................................................................................. 1 NOMENCLATURE ................................................................................................................................... 2 TABLE OF CONTENTS ........................................................................................................................... 3 1. INTRODUCTION ............................................................................................................................... 5 1.1. BACKGROUND .................................................................................................................................. 5 1.1.1. The current situation in Europe .............................................................................................. 5 1.1.2. The French situation ............................................................................................................... 7 1.2. THE GOALS OF THIS MASTER’S THESIS ............................................................................................11 1.3. THE MASTER’S THESIS CONTENT ....................................................................................................11 2. PRESENTATION OF EDF ..............................................................................................................12 2.1. EDF COMPANY ..............................................................................................................................12 2.1.1. Electricity production and consumption in France ................................................................12 2.1.2. The opening to competition in the electricity market ............................................................12 2.1.3. The EDF company today ......................................................................................................12 2.1.4. Some key data......................................................................................................................13 2.1.5. The main assets ...................................................................................................................13 2.2. EDF R&D .....................................................................................................................................13 2.3. THE RESEARCH TEAM EFESE-R12 ................................................................................................14 3. TECHNOLOGY CHOICES OF THE REFERENCE OFFSHORE WIND FARM .............................15 3.1. OFFSHORE WIND FARM TECHNOLOGIES ...........................................................................................15 3.1.1. Electrical layout of offshore wind farms : ..............................................................................16 3.1.2. Wind turbine generators: ......................................................................................................16 3.1.3. Internal cables : ....................................................................................................................18 3.1.4. Offshore substations : ..........................................................................................................18 3.1.5. Wind farm connections : Transmission cables .....................................................................19 3.2. ANALYSIS OF 6 OFFSHORE WIND FARMS ..........................................................................................19 3.3. CONCLUSION ABOUT THE STUDIED OFFSHORE WIND FARMS ..............................................................25 3.4. CHOSEN SPECIFICATIONS FOR THE REFERENCE OFFSHORE WIND FARM ............................................28 4. TECHNICAL REQUIREMENTS FOR OFFSHORE WIND FARM CONNECTIONS : SPECIFIC OFFSHORE GRID CODE ......................................................................................................................29 4.1. REQUIREMENTS ABOUT THE VOLTAGE MANAGEMENT ........................................................................31 4.1.1. Steady state conditions ........................................................................................................31 4.1.2. Reactive power/ Voltage regulation .....................................................................................32 4.1.3. Fault ride through (with grid support) ...................................................................................33 4.2. REQUIREMENTS ABOUT THE FREQUENCY MANAGEMENT ...................................................................34 4.3. SYNTHESIS ABOUT OFFSHORE GRID CODES .....................................................................................35 5. BEHAVIOR OF OFFSHORE WIND FARMS DURING A FAULT : FARM + HVDC ......................37 5.1. INTRODUCTION...............................................................................................................................37 5.1.1. HVAC transmission systems ................................................................................................37 5.1.2. HVDC transmission systems ................................................................................................37 5.2. PRESENTATION OF VSC-HVDC TRANSMISSION SYSTEMS ................................................................37 5.3. VSC-HVDC LINE AND FARM BEHAVIORS DURING A FAULT ................................................................39 5.3.1. Description of the problem ...................................................................................................39 5.3.2. Possible solutions .................................................................................................................40 5.3.3. Examples of different case studies from the literature .........................................................41 5.4. CONCLUSION .................................................................................................................................43 Alexandre Henry Page 3 / 90 KTH Master Thesis Modeling and dynamic analysis of offshore wind farms in France: Impact on KTH EPS power system stability - EDF R&D 6. CASE STUDY 1 : AC CONNECTION OF THE 200 MW AC REFERENCE OFFSHORE WIND FARM .....................................................................................................................................................45 6.1. MODEL OF THE WIND FARM WITH AN AC TRANSMISSION CABLE .........................................................45 6.1.1. Model of the wind turbine GE – 3 MW .................................................................................46 6.1.2. The submarine cables 33 kV and 225 kV ............................................................................47 6.1.3. The transformers ..................................................................................................................48 6.2. DYNAMIC BEHAVIOR OF THE AC/AC REFERENCE OFFSHORE WIND FARM : SIMULATIONS ....................48 6.2.1. Impact of the aggregation on the dynamic behavior of the offshore wind farm ...................49 6.2.2. Static impact of an AC 225 kV transmission line ..................................................................51 6.2.3. Dynamic behavior of the reference offshore wind farm with the AC transmission line : Compliance with the ENTSOE and RTE grid code requirements ......................................................53 6.3. CONCLUSION : CASE STUDY N°1 : AC CONNECTION OF AN OFFSHORE WIND FARM .............................68 7. CASE STUDY 2: CONNECTION OF THE AC/AC 200 MW WIND FARM ON AN ELECTRICAL NETWORK .............................................................................................................................................70 7.1. MODEL OF THE ELECTRICAL POWER SYSTEM ...................................................................................70 7.1.1. Model of synchronous
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages89 Page
-
File Size-