
LIGHT AND EMISSIONS: DEVELOPING A TEST FOR FUEL-BASED LANTERNS by URSULA BRYN GRUNWALD B.A., University of Colorado Boulder, 2020 B.S., University of Colorado Boulder, 2020 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Master of Science Department of Mechanical Engineering 2020 Committee Members: Michael Hannigan Jana Milford Julie Steinbrenner 0 Grunwald, Ursula Bryn (M.S., Mechanical Engineering) Lighting and Emissions: Developing a Test for Fuel Based Lanterns Thesis directed by Professor Michael P. Hannigan Abstract Fuel-based lanterns are used in much of the developing world, with an estimated 1.3 billion people relying on it for their daily light. However, kerosene is expensive, dangerous, and does not produce much useful lux, which is limiting to students, who might want to be able to study at night. Much research into the problem of lighting in developing countries stresses the need and importance of transitioning everyone to emissions-free, low energy using LED lanterns. However, this may take many years, indicating that there is a need to improve fuel-based lanterns while access is expanded. There is a test for testing different iterations of cookstoves in terms of their efficiency and emissions, but no equivalent test exists for lanterns. This work devised a standardized test to compare different components of lanterns, using a four stage test that includes a clean start, off period, dirty start, and "simmer" in order to reflect different stages of lantern use. Components of the lantern can be modified and the testing protocol can be utilized to identify the influence of the variable on lantern performance, such as the wick material, lantern type (hurricane versus simple wick), or level of cleaning. In the case of this work, the test was utilized to study different lantern fuel types, these being kerosene, paraffin lamp oil, and a kerosene-0.5% ethanol by weight mixture. A two-way ANOVA was then performed on the resulting tests to determine the influence of fuel type and testing stage on lighting efficiency, light stability, and carbon monoxide emission factors per gram of fuel. Analyzing the tests found a replicable pattern for all fuels in terms of carbon dioxide emissions, and calculations were performed to understand the efficiency of the fuel, the stability of the lux output, and the emissions as a function of their useful light. Using the test, it was determined that in levels above 0.5% by mass, ethanol is too unstable to be added to kerosene and compromises the light output and stability. However, below 0.5%, ethanol somewhat reduces exposure to ii carbon dioxide and carbon monoxide while not compromising light stability or efficiency. Such tests are important for determining what types of fuels or best practices could be prescribed while access to more efficient and less polluting forms of light is expanded. iii Acknowledgements I would like to express my gratitude to: • My adviser, Dr. Michael Hannigan, for his guidance and patience with developing the testing procedure, even when nothing about it seemed to make sense. • Evan Coffey, for his advice and guidance through the more complicated aspects of standardizing the test, as well as calculating the emission factors. • My friends, for their immense patience as I repeatedly explained the same three things. • My partner, Gage Froelich, for being patient with the constant, lingering smell of kerosene while I was working on the testing procedure. iv Contents CHAPTER 1: INTRODUCTION AND BACKGROUND ..................................................... 1 1.1 Motivation ..................................................................................................................... 3 1.2 United Nations Development Goals ...................................................................... 4 1.3 Development of the Research .................................................................................. 5 CHAPTER 2: LITERATURE REVIEW .............................................................................. 6 2.1 Light ............................................................................................................................... 6 2.2 Lighting as a Service ................................................................................................. 7 2.3 Light Quantity .............................................................................................................. 9 2.4 Light Quality .............................................................................................................. 10 2.5 Kerosene Lamps ......................................................................................................... 11 2.6 Indoor Air Quality ....................................................................................................... 15 2.7 Ventilation................................................................................................................... 18 2.8 Water Boiling Tests................................................................................................... 20 2.9 Gaps in the Research ............................................................................................... 22 2.10 Goals of the Research ................................................................................................... 23 CHAPTER 3: METHODOLOGY ....................................................................................... 25 v 3.1 Materials ........................................................................................................................ 25 3.2 Development of Methodology ......................................................................................... 28 3.2.1 Initial Tests ......................................................................................................... 28 3.2.2 Half-Hour Tests .................................................................................................. 30 3.2.3 Electric Lanterns ........................................................................................... 33 3.3 Final Methodology ......................................................................................................... 34 3.3.1 Set Up ............................................................................................................. 35 3.3.2 Clean Start ...................................................................................................... 36 3.3.3 Dirty Start ....................................................................................................... 37 3.3.4 Simmer Phase ................................................................................................ 38 3.3.4 Analysis and Calculations .......................................................................... 38 CHAPTER 4: APPLICATIONS OF THE TESTING PROTOCOL ........................ 42 4.1 Initial Tests Before Standardized Test ............................................................................ 42 4.2 Standardized Test - Kerosene ......................................................................................... 44 4.3 Standardized Test - 0.5% Ethanol .................................................................................. 51 4.4 Standardized Test - Lamp Oil......................................................................................... 58 4.5 Standardized Test - 1% Ethanol ..................................................................................... 65 vi CHAPTER 5: FINDINGS DISCUSSION ........................................................................... 69 5.1 Test Design and Performance .......................................................................................... 69 5.2 Two-Way ANOVA ..................................................................................................... 70 5.2.1 Efficiency ......................................................................................................... 72 5.2.2 Light Stability ................................................................................................ 75 5.2.3 Carbon Monoxide Emission Factors Per Lux ......................................... 78 5.3 Conclusions ................................................................................................................ 80 CHAPTER 6: CONCLUSIONS ........................................................................................... 82 6.1 Summary of Thesis Achievements ................................................................................ 82 6.2 Applications .................................................................................................................... 83 6.3 Future Work .................................................................................................................. 84 Bibliography ............................................................................................................................ 86 Appendix ................................................................................................................................... 91 vii List of Tables Table 1. Summary of the 1% ethanol tests………………………………………………………68 Table 2. ANOVA table from lux efficiency tests………………………………………………..73 Table 3. ANOVA table from light stability tests. ……………………………………………….76 Table 4. ANOVA table from CO EF per lux tests……………………………………………….78 viii List of Figures Figure 1. Recommended
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages117 Page
-
File Size-