Nuclear Astrophysics and Exotics

Nuclear Astrophysics and Exotics

Nuclear Astrophysics and Exotics Artemis Spyrou Michigan State University Artemis Spyrou, Belfast 2017, 1 Overview Lecture 1: Intro to Nuclear Astrophysics - reactions Lecture 2: How to measure cross sections + activity Lecture 3: Nuclear structure for astrophysics Lecture 4: Exotic phenomena close to the drip lines Artemis Spyrou, Belfast 2017, 2 Abundances From M. Wiescher, JINA web Artemis Spyrou, Belfast 2017, 3 Nucleosynthesis paths Z 56Fe Stellar burning pp chain N Artemis Spyrou, Belfast 2017, 4 Paths beyond Iron Artemis Spyrou, Belfast 2017, 5 Nuclear Astrophysics Connections Numerical approximaons Astrophysical Nuclear Input condions Stellar modeling • Solar system abundances • Stellar observaons – Abundances Compare to • Meteori:c samples Observaons • Light output / Energy produc:on • Time scales Artemis Spyrou, Belfast 2017, 6 Nuclear input: What do we need? o Basic nuclear properties • Mass • Binding energy • Half life • Level structure • Angular • Nuclear radius/shape Momentum Artemis Spyrou, Belfast 2017, 7 Nuclear Input νp-process • Close to proton drip line • Masses, T1/2 mostly known • Most important (p,n) reactions rp-process r-process • Close to proton drip line 56Fe • Masses, T1/2 mostly known • Far from stability • Proton capture reactions • Most properties not known • Masses • T1/2 • Pn Burning • Neutron captures p-process • Nuclear reactions • Resonance properties • Close to stability i-process • Masses, T1/2 known s-process • Between s and r • γ-induced reaction rates • Along stability • Mass, T1/2 known • Most properties known • Missing neutron captures • Missing neutron captures Artemis Spyrou, Belfast 2017, 8 Nuclear Reactions in Stars Main focus on capture reactions Artemis Spyrou, Belfast 2017, 9 Y X υ r = NX NYυσ(υ) ∞ r N N f(υ)σ(υ)υdυ f (υ) = X Y ∫ 0 r: reaction rate Nx, Ny: number of particles υ:velocity r ∞ σ(υ): reaction cross section at υ συ = = f(υ)σ (υ)υdυ N N ∫ f(υ): velocity distribution X Y 0 <συ>: reaction rate per particle pair Rolfs and Rodney, “Cauldrons in the cosmos” Artemis Spyrou, Belfast 2017, 10 Maxwell – Boltzmann distribution 2 ⎛ mυ ⎞ 0.5 3/ 2 ⎜ ⎟ ⎜ − ⎟ 2 ⎛ m ⎞ ⎝ 2kT ⎠ f(υ) = 4πυ ⎜ ⎟ e 0.4 (E) 2πkT φ ⎝ ⎠ 0.3 0.2 Distribution Distribution 0.1 3/ 2 ⎛ E ⎞ ⎜ − ⎟ 2 ⎛ 1 ⎞ 1/ 2 kT φ(E) = ⎜ ⎟ E e⎝ ⎠ 0.0 π ⎝ kT ⎠ 0kT 2kT 4kT 6kT 8kT 10kT 12kT 14kT Energy E 1/2 ! E $ ! 8 $ 1 ∞ #− & (E)Ee" kT %dE συ = # & 3/2 ∫ σ "πµ % (kT) 0 Rolfs and Rodney, “Cauldrons in the cosmos” Artemis Spyrou, Belfast 2017, 11 Tunnel Effect – S-factor 2 Coulomb barrier ψ (Rn ) P = 2 ψ (Rc ) projecle Tunneling probability -> R n Rc Distance r increasing with energy Poten:al V(r) Nuclear radius Artemis Spyrou, Belfast 2017, 12 Cross section has two components: 1. Interaction between particles (pure nuclear) 2. The Coulomb force Astrophysical S-factor 1 (−2πη) σ (E) = e S(E) Contains all the pure nuclear E properties Z Z e2 η: Sommerfeld parameter η = 1 2 !υ Rolfs and Rodney, “Cauldrons in the cosmos” Artemis Spyrou, Belfast 2017, 12 Astrophysical region S-factor σ(Ε) Coulomb Barrier Log Scale Cross Section Extrapolation The dangers of extrapolation S(E) factor Linear Scale Energy E Artemis Spyrou, Belfast 2017, 13 Gamow Window Maxwell – Boltzmann distribu:on Tunneling probability ⎛ E ⎞ # & ∝ exp⎜− ⎟ EC ⎝ kT ⎠ ∝ exp%− ( $ E ' Gamow peak ΔE0 Relative probability E0 Energy Artemis Spyrou, Belfast 2017, 14 Gamow Window • Charged particles Burning: T= 0.01 – 0.1 GK o (p,γ): Ep= 0.02 – 0.2MeV Standard approximation o (α,γ): Eα= 0.05 -0.5 MeV p process: T= 1.8 – 3.3 GK 2 2 2 1/3 E0 = 0.12204(Z1 Z2 µT9 ) o (p,γ): Ep= 1 – 5 MeV [in MeV] o (α,γ): Eα= 4 -12 MeV E 0.237(Z 2Z 2 T 5 )1/6 Δ 0 = 1 2 µ 9 rp process: T= 1.1 – 1.3 GK o (p,γ): E = 0.8 – 2 MeV ΔE p Window: E + 0 νp process: T= 1.5 – 3.0 GK 0 2 o (p,γ): Ep= 1 – 4 MeV • Neutrons No Coulomb barrier, angular momentum 1 s process: T~ 0.3GK Eeff = 0.172T9 (ℓ + ) 2 o (n,γ): En= 25 - 75 keV [in MeV] i process: T= 0.1-0.3GK 1 o (n,γ): Ep= 10 – 75 MeV ΔEeff = 0.194T9 ℓ + 2 r process: T= 0.1 – 2.0 GK ΔEeff Window: E + o (n,γ): Ep= 10 – 500 keV eff 2 Rauscher, PRC 81 (2010) 045807 Kadonis.org : Gamow Calculator Artemis Spyrou, Belfast 2017, 15 Nuclear input: What do we need? o Nuclear reactions/Astrophysical reaction rates * a A B B Radiative capture reactions Incoming channel + → → +γ Resonant Statistical Direct A A A Q Q Q B B B Artemis Spyrou, Belfast 2017, 16 o Example: 24Mg(p,γ)25Al Marialuisa Aliotta, University of Edinburgh 11th Euro Summer School on Exotic Beams Artemis Spyrou, Belfast 2017, 17 Nuclear input: What do we need? o Nuclear reactions/Astrophysical reaction rates a + A → B* → B +γ Prompt Outgoing channel or other particle channels (Competing channels) n γ B-1n Delayed A Q β B n Τ1/2 γ C-1n C Artemis Spyrou, Belfast 2017, 18 Experiment Accelerator Facilities Artemis Spyrou, Belfast 2017, 19 Facilities Stable beam facilities (Intro Physics) • Van de Graaff (single-ended or tandem) • Cyclotrons • LINACS Artemis Spyrou, Belfast 2017, 20 Basic Components Analyzing magnet Accelerator Ion sources Beam Lines 5MV tandem accelerator @ Institute of Nuclear Physics, “Demokritos”, Athens, Greece Artemis Spyrou, Belfast 2017, 21 Radioactive Beams • Fragmenta0on: NSCL/FRIB, GSI/FAIR, RIKEN, … Target Fast RIB Stable beam Fragmentaon Separaon • Isotope Separaon On-Line (ISOL): TRIUMF, SPIRAL, ISOLDE, … Target Extrac:on Stable beam RIB Separaon Reacceleraon • Fission source: CARIBU/ANL Fission source Separaon Acceleraon RIB Extrac:on • Low energy reac0ons: ANL, FSU, Texas A&M, Notre Dame, … Target Low energy RIB Stable beam Reac:on Separaon? Artemis Spyrou, Belfast 2017, 22 NSCL@MSU • Naonal Superconduc0ng Cyclotron Laboratory “Stopped beam area” Gas Stopper ReAccelerator Facility K500 Cyclotron S800 Spectrograph A1900 Fragment Separator K1200 Cyclotron Artemis Spyrou, Belfast 2017, 23 Coupled Cyclotron Facility Example: 86Kr → 78Ni K500 ion sources coupling 86Kr14+, line 12 MeV/u K1200 A1900 focal plane Δp/p = 5% producon transmission stripping 86Kr34+, target foil of 65% of the 140 MeV/u produced 78Ni wedge fragment yield aer target fragment yield aer wedge fragment yield at focal plane Artemis Spyrou, Belfast 2017, 24 Neutron Facilities Time-of-Flight: e.g. nTOF@CERN, LANSCE@ Los Alamos, IRMM@Geel, Belgium, etc • High energy protons on heavy target, broad energy distribu:on, pulsed beam. Reac0on-based, quasi-monoenergec: Any low energy facility 2 2 3 • Reac:ons: H( H,n) He – Q= 3.3 MeV - En= 2.5 MeV 3 2 4 H( H,n) He – Q= 17.6 MeV - En = 14.1 MeV 7 7 Li(p,n) Be – Q= - 1.64 MeV – En=? – How can you get 25 keV? … Artemis Spyrou, Belfast 2017, 25 In the Laboratory Number of reactions • Yield of reaction: Y = Number of beam particles Yield of reaction N • Cross section: σ = = R Number of target particles Nb ⋅ NT To measure a cross section you need three things: 1. Number of target particles (NT) !!! 2. Number of beam particles (Nb) !!! 3. Number of reactions (NR) !!! Artemis Spyrou, Belfast 2017, 26 Number of target particles 1 • Rutherford backscattering 92 ΔΕ0 Mo target 0 Mo Ed = 1.35 MeV ΔΕ - experiment 0 0 Ε Ε Beam simulation ο 170 Ε1 Ε1-ΔΕ Al backing 1 Si detector # events ΔΕ # events 1 Energy (keV) Ε -ΔΕ Ε Ε 1 1 1 o Simulation with SIMNRA o Known detector geometry N : Avogadro number N Aξ A o Known cross section NT = A: Atomic mass A ξ: target thickness in g/cm2 o Free parameter: target thickness/composition Artemis Spyrou, Belfast 2017, 27 Tools 1 Si surface barrier detector – Semi-conductor hp://nsspi.tamu.edu/nssep/courses/basic-radiaon-detec:on/ semiconductor-detectors/introduc:on/introduc:on Artemis Spyrou, Belfast 2017, 28 Number of target particles 1 • X-ray Fluorescence (XRF) M L K M L K X-ray detector # events Energy (keV) Artemis Spyrou, Belfast 2017, 29 Tools 1 SiLi detector – Semi-conductor X-ray tube • Cooling • Addition of Li helps remove impurities hmp://nau.edu/cefns/labs/electron-microprobe/glg-510-class-notes/ detec:on-of-signals/ hmp://www.schoolphysics.co.uk/age16-19/Medical%20physics/text/ X_rays/index.html Artemis Spyrou, Belfast 2017, 30 Number of target particles 1 • Particle energy loss ΔΕ0 0 ΔΕ - 0 0 Ε α α Ε source source Si detector Si detector # events Ε Ε0-ΔΕ0 Ε0 o Many other techniques like resonance measurement, use of spectrometer or recoil separator, use a reaction, etc o If radioactive sample: activity from decay Artemis Spyrou, Belfast 2017, 31 In the Laboratory Number of reactions • Yield of reaction: Y = Number of beam particles Yield of reaction N • Cross section: σ = = R Number of target particles Nb ⋅ NT To measure a cross section you need three things: 1. Number of target particles (NT) !!! 2. Number of beam particles (Nb) !!! 3. Number of reactions (NR) !!! Artemis Spyrou, Belfast 2017, 32 Number of beam particles 2 • High beam intensities: measure deposited charge Collimator 1 Collimator 2 Target beam detector A Ammeter/ Current integrator e.g. 1H+ beam: each beam particle deposits 1.6 x 10-19 Cb (e- charge) 84Kr27+ beam: each beam particle deposits 27 x 1.6 x 10-19 Cb Artemis Spyrou, Belfast 2017, 33 Number of beam particles 2 • High beam intensities: measure deposited charge Collimator 1 Collimator 2 - Target e e- beam detector - - e - e e- e A Ammeter/ Current integrator Artemis Spyrou, Belfast 2017, 34 Number of beam particles 2 • High beam intensities: measure deposited charge Collimator 1 Collimator 2 - Target e- - e e- beam e detector - - e- e- e - e e- e- e e- A Ammeter/ Current integrator +- Beam: positive charge +1e + +-+- Measurement 1: +1e +- Measurement 2: +2e = false +- +- +- How do we fix it? Artemis Spyrou, Belfast 2017, 35 Number of beam particles 2 • Low beam intensities: measure each particle in detector 1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    124 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us