General Relativity

General Relativity

GENERAL RELATIVITY —LECTURE NOTES — PRELIMINARY VERSION FEBRUARY 4, 2020 PROF.DR.HAYE HINRICHSEN LEHRSTUHL FÜR THEORETISCHE PHYSIK III FAKULTÄT FÜR PHYSIK UND ASTRONOMIE UNIVERSITÄT WÜRZBURG,GERMANY SUMMER TERM 2018 Contents 1 Mathematical foundations1 1.1 Elements of group theory . .1 1.1.1 Groups . .1 1.1.2 Cosets . .2 1.1.3 Normal subgroups . .2 1.1.4 Quotient groups . .3 1.1.5 Homomorphisms . .3 1.1.6 Kernel, image, and the corresponding quotient groups . .4 1.2 Vector spaces . .5 1.2.1 Fields . .5 1.2.2 Vector space axioms . .5 1.2.3 Affine spaces . .6 1.2.4 Representation of vectors . .6 1.3 Linear maps . .8 1.3.1 Definition and properties . .8 1.3.2 Representation of linear maps . .9 1.3.3 Basis transformations . .9 1.4 Composite vector spaces . 11 1.4.1 Direct sum ⊕ .............................. 11 1.4.2 Representation of direct sums . 11 1.4.3 Tensor product ⊗ ............................ 12 1.4.4 Calculation rules for tensor products . 13 1.4.5 Representation of the tensor product . 14 1.4.6 Multiple tensor products . 16 1.5 Multilinear forms . 16 1.5.1 1-forms . 16 1.5.2 Representation of 1-forms . 17 1.5.3 How 1-forms change under basis transformations . 19 1.5.4 Tensors . 20 1.5.5 Representation of tensors . 21 1.5.6 Induced basis in the space of tensors N(q,p)V ............ 22 1.5.7 Tensors versus matrices . 22 1.5.8 Tensor product of tensors . 23 1.5.9 Representation of the tensor product . 23 1.5.10 Contraction . 24 1.5.11 Representation of a contraction . 25 1.5.12 Tensor algebra . 26 1.6 Metric . 26 1.6.1 Metric tensor and scalar product . 26 1.6.2 Representation of the metric tensor . 28 c HAYE HINRICHSEN —GENERAL RELATIVITY — CC BY-SA 4.0 iv Contents 1.6.3 Examples . 28 1.6.4 Musical isomorphism V $ V∗ .................... 29 1.6.5 Representation of [ and ]: Raising and lowering of indices . 30 1.6.6 Application of the musical operators to tensors . 32 1.6.7 Transformation behavior of the metric . 32 1.6.8 Determinant of the metric . 32 ij 1.6.9 Differentiating the determinant g with respect to g or gij..... 34 2 Differential forms 37 2.1 Exterior algebra . 37 2.1.1 Exterior product (wedge product) . 37 2.1.2 q-multivectors . 39 2.1.3 p-forms . 40 2.1.4 Exterior algebra . 41 2.1.5 Representation of p-forms . 42 2.1.6 Representation of the wedge product . 43 2.1.7 Visual interpretation of the exterior algebra . 44 2.1.8 The volume form w ........................... 45 2.1.9 Representation of the volume form . 47 2.1.10 Contraction i .............................. 48 2.1.11 Representation of the contraction i in the exterior algebra . 49 2.2 Hodge duality . 50 2.2.1 Illustrative description of the Hodge duality . 50 2.2.2 Induced scalar product on p-forms . 51 2.2.3 Representation of the generalized scalar product . 52 2.2.4 Hodge duality on the basis of the generalized scalar product . 52 2.2.5 Hodge-star operator? ......................... 54 2.2.6 Representation of the Hodge-star operator? ............ 54 2.2.7 Properties of the Hodge-star operator ? ............... 55 2.2.8 Hodge-? operator represented in an orthonormal basis . 55 2.2.9 Self-duality * . 56 2.3 Functions, coordinate systems and differential forms . 57 2.3.1 Scalar functions, curves and directional derivatives . 58 2.3.2 Differentials . 60 2.3.3 Coordinate systems . 61 2.3.4 Coordinate basis . 62 2.3.5 Representation of fields in coordinate systems . 63 2.3.6 Changing between different coordinate systems . 65 2.3.7 Degenerate differential forms and zero vector fields . 67 2.4 Derivatives . 67 2.4.1 Generalized differential . 67 2.4.2 Exterior derivative . 69 2.4.3 Representation of the exterior algebra . 70 2.4.4 The Poincaré lemma . 71 2.4.5 Relation to ordinary vector analysis . 71 2.4.6 The co-differential operator . 72 2.4.7 Lie bracket . 73 c HAYE HINRICHSEN —GENERAL RELATIVITY — CC BY-SA 4.0 Contents v 2.5 Integration of forms . 74 2.5.1 Special cases . 74 2.5.2 Generic integrals over p-forms . 76 2.5.3 Stokes theorem . 76 2.6 Tensor-valued forms * . 76 3 Elementary concepts of differential geometry 79 3.1 Manifolds . 79 3.1.1 Maps . 80 3.1.2 Changes between different maps . 81 3.1.3 Functions on manifolds . 82 3.2 Tangent space and cotangent space . 83 3.2.1 Directional derivatives and differentials: . 83 3.2.2 Tangent bundle and cotangent bundle . 84 3.2.3 Excursus: fiber bundles * . 84 3.2.4 Coordinate basis . 85 3.2.5 Structural coefficients . 86 3.3 Parallel transport . 87 3.3.1 Transport of geometric objects . 87 3.3.2 Parallel transport of tangent vectors . 88 3.3.3 Covariant derivative of vector fields . 89 3.3.4 Connections . 90 3.3.5 Representation of the connection . 91 3.3.6 Representation of the connection in the coordinate basis . 92 3.3.7 Covariant transformation behavior . 93 3.3.8 Geodesic lines . 93 3.3.9 How the connection is calculated . 94 3.3.10 Covariant derivative of arbitrary tensor fields . 97 3.3.11 Exterior derivative of the tensorial forms* . 99 3.4 Curvature . 100 3.4.1 Riemann curvature tensor . 100 3.4.2 Representation of the Riemannian curvature tensor . 101 3.4.3 Symmetries of the curvature tensor . 101 3.4.4 Ricci tensor . 102 3.4.5 Interpretation of curvature tensors . 103 4 Electrodynamics as a gauge theory 105 4.1 U(1) gauge theory . 105 4.1.1 Intrinsic degrees of freedom . 105 4.1.2 Representation of intrinsic degrees of freedom . 108 4.1.3 Gauge transformations . 109 4.1.4 Two-dimensional U(1) gauge theory . 110 4.1.5 Covariant derivative . 112 4.1.6 Intrinsic curvature: The electromagnetic field . 112 4.2 Electrodynamics in terms of differential forms . 113 4.2.1 The electromagnetic field as a differential form . 113 4.2.2 Equation of motions in differential forms . 114 4.2.3 Equations of motion in components . 115 c HAYE HINRICHSEN —GENERAL RELATIVITY — CC BY-SA 4.0 vi Contents 4.2.4 U(1) gauge symmetry . 116 4.2.5 Action . 116 4.2.6 Wave equation . 117 4.2.7 Representation of electrodynamics . 117 4.2.8 Charge conservation . 117 5 Field equations of general relativity 119 5.1 Concept of General Theory.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    182 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us