Botnet Detection a Numerical and Heuristic Analysis

Botnet Detection a Numerical and Heuristic Analysis

University of Minho School of Engineering Luís Miguel Ferreira Costa Mendonça Botnet Detection A Numerical and Heuristic Analysis January 2012 University of Minho School of Engineering Luís Miguel Ferreira Costa Mendonça Botnet Detection A Numerical and Heuristic Analysis Master Thesis Master in Communication Networks and Services Engineering Research oriented by: Henrique Manuel Dinis dos Santos January 2012 “Information is not knowledge” Albert Einstein Botnet Detection: A Numerical and Heuristic Analysis i Table of Contents 1. Introduction .............................................................................................. 1 1.1 Goals .................................................................................................................... 2 1.2 Research Methodology ........................................................................................... 3 1.3 Document Organization and Notes of Attention ....................................................... 4 1.4 Research Calendar ................................................................................................ 5 2. Botnet Characterization ............................................................................. 7 2.1 Definition ............................................................................................................... 7 2.2 Propagation and Recruitment ................................................................................. 7 2.3 Command and Control ........................................................................................ 11 2.4 Maintenance and Availability ................................................................................ 20 2.5 Attacks ................................................................................................................ 23 2.6 Botnet History: The Malware Chronicles ............................................................... 27 2.7 Conclusions ......................................................................................................... 29 3. Botnet Detection and Analysis .................................................................31 3.1 Honeynets, Honeypots and SPAM Traps .............................................................. 31 3.2 Signature-based Methods ..................................................................................... 31 3.3 DNS-based Methods ............................................................................................ 32 3.4 Anomaly-based Methods ...................................................................................... 34 3.5 Related Work ....................................................................................................... 34 3.6 Conclusions ......................................................................................................... 36 4. Botnet Anomaly-Based Detection .............................................................39 4.1 Bot Behavior ........................................................................................................ 41 4.2 Botnet Behavior ................................................................................................... 42 4.3 Useful Traffic Data for Anomalous-Based Detection .............................................. 42 Botnet Detection: A Numerical and Heuristic Analysis ii 4.4 Conclusions ......................................................................................................... 44 5. Proposed Model and Prototype ...............................................................47 5.1 Initial Research .................................................................................................... 47 5.2 Netflow as the Traffic Feature Source ................................................................... 55 5.3 Traffic Attributes Heuristics .................................................................................. 57 5.4 Communications Fingerprints .............................................................................. 61 5.5 Detection Framework Implementation .................................................................. 63 5.6 Prototype Implementation .................................................................................... 70 5.7 Conclusions ......................................................................................................... 72 6. Experimental Setup, Results and Analysis ................................................73 6.1 Test Datasets Characterization ............................................................................. 73 6.2 Prototype Test Environment ................................................................................. 76 6.3 Testing Methodology ............................................................................................ 78 6.4 Detection Sensitivity and Specificity Analysis ........................................................ 82 6.5 Performance and Storage: Real-Time? .................................................................. 89 6.6 Final Results and Conclusions.............................................................................. 91 7. Discussion, Future Work and Conclusions ...............................................95 8. References .............................................................................................99 9. Apendix A: Botnet History ..................................................................... 107 Botnet Detection: A Numerical and Heuristic Analysis iii List of Figures Figure 1: IRC Botnet Topology ............................................................................................ 12 Figure 2: HTTP Botnet Topology ......................................................................................... 13 Figure 3: HTTP Botnet Hierarchic Topology ........................................................................ 14 Figure 4: P2P Botnet Topology ........................................................................................... 15 Figure 5: Number of distinct hosts with scan-like activity ..................................................... 49 Figure 6: Distinct source IPs per number of bytes and packets ........................................... 51 Figure 7: Number of distinct Source IPs with crowd-like behavior per ten-minute period ...... 52 Figure 8: Number of distinct hosts connecting to SQL Server ports per bytes per packet ..... 53 Figure 9: Communication Fingerprints (example) ................................................................ 62 Figure 10: Scanner Communication Fingerprints ................................................................ 62 Figure 11: Malicious Host Fingerprints ............................................................................... 63 Figure 12: HTTP Server Fingerprints .................................................................................. 63 Figure 13: Clustering Database Tables ............................................................................... 69 Figure 14: Padre Integrated Development Environment ...................................................... 71 Figure 15: SQL Server Scripts Test Examples ..................................................................... 71 Figure 16: Typical University of Minho 24-hour traffic shown in Nfsen (12th January 2011) . 74 Figure 17: Netflow Capture System .................................................................................... 74 Figure 18: Distinct active hosts for each hourly period (16th November 2011) .................... 76 Figure 19: Distinct active hosts for each hourly period present in blacklists (16th November 2011) ................................................................................................................................ 76 Figure 20: nfsen "testplugin" command-line tool ................................................................ 77 Figure 21: ROC Plot for CAST variation ............................................................................... 83 Figure 22: First-Pass Detection - Sensitivity versus Specificity .............................................. 84 Figure 23: MNACT ROC plots with (left) and without (right) clustering analysis .................... 85 Figure 24: ROC Plot for detection without clustering analysis for MNACT=70 and HAST=950 ......................................................................................................................................... 86 Figure 25: Hosts detected without clustering analysis for MNACT=70 and HAST=950 ......... 87 Figure 26: Hosts detected using clustering analysis for MNACT=70 and HAST=950 ............ 88 Figure 27: ROC Plot for detection with clustering analysis for MNACT=70 and HAST=990 ... 88 Figure 28: Hosts detected using clustering analysis for MNACT=70 and HAST=990 ............ 89 Botnet Detection: A Numerical and Heuristic Analysis iv Figure 29: Performance Evaluation Chart ........................................................................... 90 List of Tables Table 1: Network Traffic Data Source Classification ............................................................ 46 Table 2: Top 5 bytes per packet clusters with higher SQL Server scan activity ..................... 53 Table 3: Netflow Traffic Attributes Selected ......................................................................... 56 Table 4: Sample Communication Fingerpint Values ............................................................ 61 Table 5: Connection Anomaly

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    131 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us