7: Fourier Transforms: Convolution and Parseval's Theorem

7: Fourier Transforms: Convolution and Parseval's Theorem

7: Fourier Transforms: Convolution and Parseval’s Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum 7: Fourier Transforms: • Summary Convolution and Parseval's Theorem E1.10FourierSeriesandTransforms(2014-5559) FourierTransform - Parseval and Convolution: 7 – 1 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Question: What is the Fourier transform of w(t) = u(t)v(t) ? Theorem • Multiplication of Signals • Multiplication Example • Convolution Theorem • Convolution Example • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary E1.10FourierSeriesandTransforms(2014-5559) FourierTransform - Parseval and Convolution: 7 – 2 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Question: What is the Fourier transform of w(t) = u(t)v(t) ? Theorem +∞ i2πht +∞ i2πgt • Multiplication of Signals Let u(t) = U(h)e dh and v(t) = V (g)e dg • Multiplication Example h=−∞ g=−∞ • Convolution Theorem • Convolution Example R R • Convolution Properties • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary E1.10FourierSeriesandTransforms(2014-5559) FourierTransform - Parseval and Convolution: 7 – 2 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Question: What is the Fourier transform of w(t) = u(t)v(t) ? Theorem +∞ i2πht +∞ i2πgt • Multiplication of Signals Let u(t) = U(h)e dh and v(t) = V (g)e dg • Multiplication Example h=−∞ g=−∞ • Convolution Theorem • Convolution Example R R • Convolution Properties w(t) = u(t)v(t) • Parseval’s Theorem • Energy Conservation • Energy Spectrum • Summary E1.10FourierSeriesandTransforms(2014-5559) FourierTransform - Parseval and Convolution: 7 – 2 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Question: What is the Fourier transform of w(t) = u(t)v(t) ? Theorem +∞ i2πht +∞ i2πgt • Multiplication of Signals Let u(t) = U(h)e dh and v(t) = V (g)e dg • Multiplication Example h=−∞ g=−∞ • Convolution Theorem [Note use of different dummy variables] • Convolution Example R R • Convolution Properties w(t) = u(t)v(t) • Parseval’s Theorem +∞ +∞ • Energy Conservation = U(h)ei2πhtdh V (g)ei2πgtdg • Energy Spectrum h=−∞ g=−∞ • Summary R R E1.10FourierSeriesandTransforms(2014-5559) FourierTransform - Parseval and Convolution: 7 – 2 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Question: What is the Fourier transform of w(t) = u(t)v(t) ? Theorem +∞ i2πht +∞ i2πgt • Multiplication of Signals Let u(t) = U(h)e dh and v(t) = V (g)e dg • Multiplication Example h=−∞ g=−∞ • Convolution Theorem [Note use of different dummy variables] • Convolution Example R R • Convolution Properties w(t) = u(t)v(t) • Parseval’s Theorem +∞ +∞ • Energy Conservation = U(h)ei2πhtdh V (g)ei2πgtdg • Energy Spectrum h=−∞ g=−∞ • Summary +∞ +∞ i2π(h+g)t [merge (··· )] = Rh=−∞ U(h) g=−∞ VR(g)e dg dh e R R E1.10FourierSeriesandTransforms(2014-5559) FourierTransform - Parseval and Convolution: 7 – 2 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Question: What is the Fourier transform of w(t) = u(t)v(t) ? Theorem +∞ i2πht +∞ i2πgt • Multiplication of Signals Let u(t) = U(h)e dh and v(t) = V (g)e dg • Multiplication Example h=−∞ g=−∞ • Convolution Theorem [Note use of different dummy variables] • Convolution Example R R • Convolution Properties w(t) = u(t)v(t) • Parseval’s Theorem +∞ +∞ • Energy Conservation = U(h)ei2πhtdh V (g)ei2πgtdg • Energy Spectrum h=−∞ g=−∞ • Summary +∞ +∞ i2π(h+g)t [merge (··· )] = Rh=−∞ U(h) g=−∞ VR(g)e dg dh e Now we makeR a change ofR variable in the second integral: g = f − h +∞ +∞ i2πft = h=−∞ U(h) f=−∞ V (f − h)e df dh R R E1.10FourierSeriesandTransforms(2014-5559) FourierTransform - Parseval and Convolution: 7 – 2 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Question: What is the Fourier transform of w(t) = u(t)v(t) ? Theorem +∞ i2πht +∞ i2πgt • Multiplication of Signals Let u(t) = U(h)e dh and v(t) = V (g)e dg • Multiplication Example h=−∞ g=−∞ • Convolution Theorem [Note use of different dummy variables] • Convolution Example R R • Convolution Properties w(t) = u(t)v(t) • Parseval’s Theorem +∞ +∞ • Energy Conservation = U(h)ei2πhtdh V (g)ei2πgtdg • Energy Spectrum h=−∞ g=−∞ • Summary +∞ +∞ i2π(h+g)t [merge (··· )] = Rh=−∞ U(h) g=−∞ VR(g)e dg dh e Now we makeR a change ofR variable in the second integral: g = f − h +∞ +∞ i2πft = h=−∞ U(h) f=−∞ V (f − h)e df dh ∞ +∞ i2πft [swap ] = Rf=−∞ h=−∞R U(h)V (f − h)e dh df R R R E1.10FourierSeriesandTransforms(2014-5559) FourierTransform - Parseval and Convolution: 7 – 2 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Question: What is the Fourier transform of w(t) = u(t)v(t) ? Theorem +∞ i2πht +∞ i2πgt • Multiplication of Signals Let u(t) = U(h)e dh and v(t) = V (g)e dg • Multiplication Example h=−∞ g=−∞ • Convolution Theorem [Note use of different dummy variables] • Convolution Example R R • Convolution Properties w(t) = u(t)v(t) • Parseval’s Theorem +∞ +∞ • Energy Conservation = U(h)ei2πhtdh V (g)ei2πgtdg • Energy Spectrum h=−∞ g=−∞ • Summary +∞ +∞ i2π(h+g)t [merge (··· )] = Rh=−∞ U(h) g=−∞ VR(g)e dg dh e Now we makeR a change ofR variable in the second integral: g = f − h +∞ +∞ i2πft = h=−∞ U(h) f=−∞ V (f − h)e df dh ∞ +∞ i2πft [swap ] = Rf=−∞ h=−∞R U(h)V (f − h)e dh df +∞ i2πft = Rf=−∞ RW (f)e df R R E1.10FourierSeriesandTransforms(2014-5559) FourierTransform - Parseval and Convolution: 7 – 2 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Question: What is the Fourier transform of w(t) = u(t)v(t) ? Theorem +∞ i2πht +∞ i2πgt • Multiplication of Signals Let u(t) = U(h)e dh and v(t) = V (g)e dg • Multiplication Example h=−∞ g=−∞ • Convolution Theorem [Note use of different dummy variables] • Convolution Example R R • Convolution Properties w(t) = u(t)v(t) • Parseval’s Theorem +∞ +∞ • Energy Conservation = U(h)ei2πhtdh V (g)ei2πgtdg • Energy Spectrum h=−∞ g=−∞ • Summary +∞ +∞ i2π(h+g)t [merge (··· )] = Rh=−∞ U(h) g=−∞ VR(g)e dg dh e Now we makeR a change ofR variable in the second integral: g = f − h +∞ +∞ i2πft = h=−∞ U(h) f=−∞ V (f − h)e df dh ∞ +∞ i2πft [swap ] = Rf=−∞ h=−∞R U(h)V (f − h)e dh df +∞ i2πft = Rf=−∞ RW (f)e df R +∞ where W (fR) = h=−∞ U(h)V (f − h)dh R E1.10FourierSeriesandTransforms(2014-5559) FourierTransform - Parseval and Convolution: 7 – 2 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Question: What is the Fourier transform of w(t) = u(t)v(t) ? Theorem +∞ i2πht +∞ i2πgt • Multiplication of Signals Let u(t) = U(h)e dh and v(t) = V (g)e dg • Multiplication Example h=−∞ g=−∞ • Convolution Theorem [Note use of different dummy variables] • Convolution Example R R • Convolution Properties w(t) = u(t)v(t) • Parseval’s Theorem +∞ +∞ • Energy Conservation = U(h)ei2πhtdh V (g)ei2πgtdg • Energy Spectrum h=−∞ g=−∞ • Summary +∞ +∞ i2π(h+g)t [merge (··· )] = Rh=−∞ U(h) g=−∞ VR(g)e dg dh e Now we makeR a change ofR variable in the second integral: g = f − h +∞ +∞ i2πft = h=−∞ U(h) f=−∞ V (f − h)e df dh ∞ +∞ i2πft [swap ] = Rf=−∞ h=−∞R U(h)V (f − h)e dh df +∞ i2πft = Rf=−∞ RW (f)e df R +∞ where , W (fR) = h=−∞ U(h)V (f − h)dh U(f) ∗ V (f) R E1.10FourierSeriesandTransforms(2014-5559) FourierTransform - Parseval and Convolution: 7 – 2 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Question: What is the Fourier transform of w(t) = u(t)v(t) ? Theorem +∞ i2πht +∞ i2πgt • Multiplication of Signals Let u(t) = U(h)e dh and v(t) = V (g)e dg • Multiplication Example h=−∞ g=−∞ • Convolution Theorem [Note use of different dummy variables] • Convolution Example R R • Convolution Properties w(t) = u(t)v(t) • Parseval’s Theorem +∞ +∞ • Energy Conservation = U(h)ei2πhtdh V (g)ei2πgtdg • Energy Spectrum h=−∞ g=−∞ • Summary +∞ +∞ i2π(h+g)t [merge (··· )] = Rh=−∞ U(h) g=−∞ VR(g)e dg dh e Now we makeR a change ofR variable in the second integral: g = f − h +∞ +∞ i2πft = h=−∞ U(h) f=−∞ V (f − h)e df dh ∞ +∞ i2πft [swap ] = Rf=−∞ h=−∞R U(h)V (f − h)e dh df +∞ i2πft = Rf=−∞ RW (f)e df R +∞ where , W (fR) = h=−∞ U(h)V (f − h)dh U(f) ∗ V (f) This is the convolutionR of the two spectra U(f) and V (f). E1.10FourierSeriesandTransforms(2014-5559) FourierTransform - Parseval and Convolution: 7 – 2 / 10 Multiplication of Signals 7: Fourier Transforms: Convolution and Parseval’s Question: What is the Fourier transform of w(t) = u(t)v(t) ? Theorem +∞ i2πht +∞ i2πgt • Multiplication of Signals Let u(t) = U(h)e dh and v(t) = V (g)e dg • Multiplication Example h=−∞ g=−∞ • Convolution Theorem [Note use of different dummy variables] • Convolution Example R R • Convolution Properties w(t) = u(t)v(t) • Parseval’s Theorem +∞ +∞ • Energy Conservation = U(h)ei2πhtdh V (g)ei2πgtdg • Energy Spectrum h=−∞ g=−∞ • Summary +∞ +∞ i2π(h+g)t [merge (··· )] = Rh=−∞ U(h) g=−∞ VR(g)e dg dh e Now we makeR a change ofR variable in the second integral: g = f − h +∞ +∞ i2πft = h=−∞ U(h) f=−∞ V (f − h)e df dh ∞ +∞ i2πft [swap ] = Rf=−∞ h=−∞R U(h)V (f − h)e dh df +∞ i2πft = Rf=−∞ RW (f)e df R +∞ where , W (fR) = h=−∞ U(h)V (f − h)dh U(f) ∗ V (f) This is the convolutionR of the two spectra U(f) and V (f). w(t) = u(t)v(t) ⇔ W (f) = U(f) ∗ V (f) E1.10FourierSeriesandTransforms(2014-5559) FourierTransform - Parseval and Convolution: 7 – 2 / 10 < < Multiplication Example 7: Fourier Transforms:

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    107 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us