
ChapterChapter 1010 SemiconductorSemiconductor MemoriesMemories Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan OutlineOutline • Introduction • Random Access Memories • Content Addressable Memories • Flash Memories National Central University EE6013 VLSI Design 2 OverviewOverview ofof MemoryMemory TypesTypes Semiconductor Memories Read/Write Memory or Random Access Memory (RAM) Read Only Memory (ROM) Random Access Non-Random Access Memory (RAM) Memory (RAM) •Mask (Fuse) ROM •Programmable ROM (PROM) •Erasable PROM (EPROM) •Static RAM (SRAM) •FIFO/LIFO •Electrically EPROM (EEPROM) •Dynamic RAM (DRAM) •Shift Register •Flash Memory •Register File •Content Addressable •Ferroelectric RAM (FRAM) Memory (CAM) •Magnetic RAM (MRAM) National Central University EE6013 VLSI Design 3 MemoryMemory ElementsElements –– Memory Architecture • Memory elements may be divided into the following categories − Random access memory − Serial access memory − Content addressable memory • Memory architecture 2m+k bits row decoder row decoder 2n-k words row decoder row decoder column decoder k n-bit address column mux, m-bit data I/Os sense amp, write buffers National Central University EE6013 VLSI Design 4 11--DD MemoryMemory ArchitectureArchitecture S0 S0 Word0 Word0 S1 S1 Word1 Word1 S2 S2 Word2 Word2 A0 S3 S3 A1 Decoder Ak-1 Sn-2 Storage Sn-2 Wordn-2 element Wordn-2 Sn-1 Sn-1 Wordn-1 Wordn-1 m-bit m-bit Input/Output Input/Output n select signals are reduced n select signals: S0-Sn-1 to k address signals: A0-Ak-1 National Central University EE6013 VLSI Design 5 22--DD MemoryMemory ArchitectureArchitecture S0 Word0 Wordi-1 S1 A0 A1 Ak-1 Row Decoder Sn-1 Wordni-1 A 0 Column Decoder Aj-1 Sense Amplifier Read/Write Circuit m-bit Input/Output National Central University EE6013 VLSI Design 6 33--DD MemoryMemory ArchitectureArchitecture Row Column Block Input/Output National Central University EE6013 VLSI Design 7 ConceptualConceptual 22--DD MemoryMemory OrganizationOrganization Address Memory Cell Row Decoder Column decoder Data I/Os National Central University EE6013 VLSI Design 8 MemoryMemory ElementsElements –– RAM Generic RAM circuit Bit line conditioning Clocks RAM Cell n-1:k Sense Amp, Column Write k-1:0 Mux, Write Buffers Clocks Address write data read data National Central University EE6013 VLSI Design 9 RAMRAM –– SRAM Cells 6-T SRAM cell word line bit - bit 4-T SRAM cell word line bit - bit National Central University EE6013 VLSI Design 10 RAMRAM –– DRAM Cells 4-T dynamic RAM (DRAM) cell word line bit - bit 3-T DRAM cell Read Write Write Read data data National Central University EE6013 VLSI Design 11 RAMRAM –– DRAM Cells 1-T DRAM cell word line word line Vdd or bit bit Vdd/2 Layout of 1-T DRAM (right) Vdd word line bit National Central University EE6013 VLSI Design 12 RAMRAM –– DRAM Retention Time Write and hold operations in a DRAM cell WL=1 WL=0 on + off + Cs Vs + Cs Vs Input Vdd - - - Write Operation Hold V s = V max = V DD − V tn Q max = C s (V DD − V tn ) National Central University EE6013 VLSI Design 13 RAMRAM –– DRAM Retention Time Charge leakage in a DRAM Cell Vs(t) WL=0 Vmax IL Minimum logic 1 V1 voltage off + C V (t) s - s t th dQ I = − ( s ) L dt dV I = − C ( s ) L s dt ∆ V I ≈ − C ( s ) L s ∆ t C s t h = | ∆ t |≈ ( ) ∆ V s I L National Central University EE6013 VLSI Design 14 RAMRAM –– DRAM Refresh Operation As an example, if IL=1nA, Cs=50fF, and the difference of Vs is 1V, the hold time is 50 ×10 −15 t = ×1 = 0.5µs h 1×10 −9 Memory units must be able to hold data so long as the power is applied. To overcome the charge leakage problem, DRAM arrays employ a refresh operation where the data is periodically read from every cell, amplified, and rewritten. The refresh cycle must be performed on every cell in the array with a minimum refresh frequency of about 1 f refresh ≈ 2t h National Central University EE6013 VLSI Design 15 RAMRAM –– DRAM Read Operation WL=1 IL on + C C V V bit + s - s f Vbit - Vf Q s = C sV s Q s = C sV f + C bit V f C s V f = ( )V s C s + C bit This shows that Vf<Vs for a store logic 1. In practice, Vf is usually reduced to a few tenths of a volt, so that the design of the sense amplifier becomes a critical factor National Central University EE6013 VLSI Design 16 RAMRAM –– SRAM Read Operation Vdd precharge precharge precharge bit, -bit word line word data -bit bit data National Central University EE6013 VLSI Design 17 RAMRAM –– SRAM Read Operation Vdd-Vtn precharge precharge precharge Vdd bit, -bit word line word data -bit bit data National Central University EE6013 VLSI Design 18 RAMRAM –– SRAM Read Operation bit, -bit word data -bit bit load V2 sense + sense - pass V1 sense common pulldown National Central University EE6013 VLSI Design 19 RAMRAM –– Differential Amplifier Vdd Mp1 Mp2 I ISS f Id2 Id1 Id1 Id2 d d’ Mn1 Mn2 Id1 Id2 ISS 0 d – d’ se Mn ISS=Id1+Id2 National Central University EE6013 VLSI Design 20 RAMRAM –– Write Operation N 5 N6 write data word write N3 N4 word bit, -bit -bit bit N N write 1 2 cell, -cell write data National Central University EE6013 VLSI Design 21 RAMRAM –– Write Operation -bit bit Pbit 5V -cell cell 0V -write Nbit write ND PD write-data National Central University EE6013 VLSI Design 22 RAMRAM –– Row Decoder word<3> word<0> word<2> word<1> word<1> word<2> word<0> word<3> a<1> a<0> a<1> a<0> National Central University EE6013 VLSI Design 23 RAMRAM –– Row Decoder word a1 a0 a0 a1 a2 a3 Complementary AND gate Pseudo-nMOS gate National Central University EE6013 VLSI Design 24 RAMRAM –– Row Decoder Symbolic layout of row decoder output Vss Vdd Vss National Central University EE6013 VLSI Design 25 RAMRAM –– Row Decoder Symbolic layout of row decoder Vdd output Vss a3 -a3 a2 -a2 a1 -a1 a0 National Central University EE6013 VLSI Design 26 RAMRAM –– Row Decoder Predecode circuit word<7> word<6> word<5> word<4> word<3> word<2> word<1> word<0> a2 a1 a0 National Central University EE6013 VLSI Design 27 RAMRAM –– Row Decoder Actual implementation a0 a4 a3 a2 a1 word -a0 clk Pseudo-nMOS example a0 word a1 a2 en National Central University EE6013 VLSI Design 28 RAMRAM –– Column Decoder bit<7> bit<6> bit<5> bit<4> selected-data bit<3> bit<2> bit<1> bit<0> to sense amps and write ckts -bit<7> -bit<6> -bit<5> -bit<4> -selected-data -bit<3> -bit<2> -bit<1> -bit<0> a0-a0 a1 -a1 a2 -a2 National Central University EE6013 VLSI Design 29 RAMRAM –– Multi-port RAM write read0 read1 -rbit1 -rbit0 -rwr_datarwr_data rbit0 rbit1 write read0 read1 -rbit1 -rwr_datarwr_data rbit0 National Central University EE6013 VLSI Design 30 RAMRAM –– Expandable Reg. File Cell wr-b addr<3:0> rd-a addr<3:0> rd-b addr<3:0> write-data read-data 0 read-data 1 write-data write-enable(row) read0 read1 Write-enable (column) National Central University EE6013 VLSI Design 31 SpecificSpecific MemoryMemory –– FIFO Two port RAM Write-Data Read-Data Write-Address Read-Address Write-Clock Read-Clock Full Empty FIFO read address control design WP 0 0 1 1 Read rst 1 clk incrementer National Central University EE6013 VLSI Design 32 SpecificSpecific MemoryMemory –– FIFO FIFO address control design 0 -1 0 decrementer 1 0 1 1 rst 1 Read clk incrementer Empty Read Write Full National Central University EE6013 VLSI Design 33 SpecificSpecific MemoryMemory –– LIFO LIFO (Stack) Require: Single port RAM One address counter Empty/Full detector Algorithm: Write: write current address Address=Address+1 Read: Address=Address-1 read current address Address Empty: Address=0 Full : Address=FFF… National Central University EE6013 VLSI Design 34 SpecificSpecific MemoryMemory –– SIPO SIPO cell design Read Parallel-data Sh-In Sh-Out Clk -Clk SIPO Read Sh-In Clk National Central University EE6013 VLSI Design 35 SpecificSpecific MemoryMemory –– Tapped Delay Line delay<5> delay<4> delay<3> delay<2> delay<1> delay<0> 0 0 0 0 0 0 din 1 1 1 1 1 1 dout Clk 32-stage SR 16-stage SR 8-stage SR 4-stage SR 2-stage SR 1-stage SR National Central University EE6013 VLSI Design 36 NonNon--volatilevolatile MemoryMemory –– ROM 4x4 NOR-type ROM Vdd WL0 GND WL1 WL2 GND WL3 BL0 BL1 BL2 BL3 National Central University EE6013 VLSI Design 37 NonNon--volatilevolatile MemoryMemory –– ROM 4x4 NAND-type ROM Vdd BL0 BL1 BL2 BL3 WL0 WL1 WL2 WL3 National Central University EE6013 VLSI Design 38 SpecificSpecific MemoryMemory –– CAM • Content addressable memories (CAMs) play an important role in digital systems and applications − such as communication, networking, data compression, etc. • Each storage element of a CAM has the hardware capability to store and compare its contents with the data broadcasted by the control unit • CAM types − dynamic or static − binary or ternary • The binary static CAM is discussed National Central University EE6013 VLSI Design 39 DifferenceDifference BetweenBetween RAMRAM andand CAMCAM Address RAM Data R/W Hit Data CAM Cmd Address National Central University EE6013 VLSI Design 40 CAMCAM –– Applications CAM architecture CAM Memory Array Data Match NxM-bit words Cache architecture CAM RAM Match 0 Word 0 Match 1 Word 1 CAM Memory Array Match 2 Match 3 Word 2 Data In NxM-bit words Word 3 Match 4 Word 4 Match 5 Word 5 Data I/Os National Central University EE6013 VLSI Design 41 CAMCAM –– Architecture Comparand Register Mask Register Address Hit Input Memory Array Address Valid Bit Responder Output Address Decoder I/O Register National Central University EE6013 VLSI Design 42 CAMCAM –– Basic Components • Comparand Register − It contains the data to be compared with the content of the memory array • Mask Register − It is used to mask
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages57 Page
-
File Size-