Diracdelta.Pdf

Diracdelta.Pdf

DiracDelta Notations Traditional name Dirac delta function Traditional notation d x Mathematica StandardForm notation H L DiracDelta x Primary definition@ D 14.03.02.0001.01 1 ¶ d x lim ; x Î R p ¶®0 x2 + ¶2 H L Specific values Specialized values 14.03.03.0001.01 d x 0 ; x ¹ 0 Values at fixed points H L 14.03.03.0002.01 d 0 ¥ GeneralH L characteristics Domain and analyticity d x is a non-analytical function; it is generalized function defined for x Î R. 14.03.04.0001.01 xd x R 0, ¥ H L Symmetries and periodicities H L 8 < http://functions.wolfram.com 2 Parity d x is an even generalized function. 14.03.04.0002.01 d -x d x H L Periodicity H L H L No periodicity Series representations Exponential Fourier series 14.03.06.0001.01 1 ¥ d x ãä k x ; - p < x < p 2 p k=-¥ 14.03.06.0002.01 H L â 1 1 ¥ d x + cos k x ; - p < x < p 2 p p k=1 14.03.06.0003.01 H L â H L 1 ¥ k p x k p y d x - y sin sin ; L Î R L > 0 L k=1 L L H L â ß Integral representations On the real axis Of the direct function 14.03.07.0001.01 1 ¥ d x ãä t x ât 2 p -¥ 14.03.07.0002.01 H L 1 ॠä d x ãä t x q t ât - p -¥ p x 14.03.07.0003.01 H L 1 à ¥ H L d x cos x t ât p -¥ 14.03.07.0004.01 H L 2 à ¥ H L d x cos x t ât p 0 14.03.07.0005.01 ¶HdLx à 1 H ¥L - t ãä x t ât ¶x 2 p ä -¥ H L à http://functions.wolfram.com 3 14.03.07.0006.01 ¶d x 1 ¥ t ã-ä x t ât ¶x 2 p ä -¥ H L Limit representationsà 14.03.09.0001.01 1 d x lim q x + 1 q 1 - x ¶ x ¶-1 ¶®+0 2 14.03.09.0014.01 H L 2 l +H 1 !!L H lL ¤ d x lim 1 - z2 ¶®¥ 2l+1 l! 14.03.09.0002.01H L H L x I M 1 - d x lim ã ¶ ¶®0 2 ¶ ¤ 14.03.09.0003.01 H L x2 1 - d x lim ã 4 ¶ ¶®+0 2 p ¶ 14.03.09.0013.01 H L 1 ä x2 d x lim ã 2 ¶ ¶®+0 2 Πä ¶ 14.03.09.0004.01 H L 1 x d x lim sin ¶®0 p ¶ ¶ 14.03.09.0005.01 H L 1 1 d x lim sin x n + n®¥ 2 p sin x 2 2 14.03.09.0006.01 H L 1 d x lim I M ¶®0 2 ¶ cosh2 x ¶ H L 14.03.09.0007.01 d x lim log cothJa xN a®¥ 14.03.09.0008.01 H L 1 H x H L¤L d x lim Ai ¶®0 ¶ ¶ 14.03.09.0009.01 H L 1 x + 1 d x lim J 1 ¶®0 ¶ ¶ ¶ 14.03.09.0010.01 H L x2 1 - 2 x ¶ d x lim ã Ln ; n Î N ¶®0 ¶ ¶ H L http://functions.wolfram.com 4 14.03.09.0011.01 a d¢ x lim a®¥ sinh a x 14.03.09.0012.01 n H L x2 1 - 1 x n H L ¶ + d x lim ã - Hn ; n Î N ¶®+0 p ¶ ¶ ¶ H L H L Transformations Transformations and argument simplifications 14.03.16.0001.01 d x d a x ; a Î R a H L H L Identitie s¤ Functional identities 14.03.17.0001.01 n d x - xj ¢ d f x ; f xj 0 f xj ¹ 0 ¢ j=1 f xj I M 14.03.17.0002.01 H H LL â I M ì I M d x1 - x0 d x2 ¡- xI0 M¥ d x1 - x0 d x2 - x1 DifHferenL tHiationL H L H L Symbolic differentiation In a distributional sense, for x Î R : 14.03.20.0001.01 d n -x -1 n d n x ; n Î N H L 14.03.20.0002.01H L n m x dH Lx H 0 L; m ÎHZL n Î Z 0 £ m < n H L 14.03.20.0003.01 n n n x d HxL -1 n! d xß ; n Î ßN H L 14.03.20.0004.01 -1 n m! xn d m HxL H L Hd mL-n x ; m Î Z n Î Z 0 £ n < m m - n ! H L H L 14.03.20.0005.01H L H L m H L m ß ß f x d m x -Hx = -L 1 m -1 k f m-k x d k x - x ; m Î N k k=0 H L H L H L H L H L H L âH L H L H L http://functions.wolfram.com 5 14.03.20.0006.01 d n a x a-n-1 d n x ; n Î N+ H L H L IntegH raL tion H L Indefinite integration Involving only one direct function 14.03.21.0001.02 d x â x q x Definiteà H L integrationH L For the direct function itself 14.03.21.0002.01 ¥ d t ât 1 -¥ Involving the direct function à H L In the following formulas a Î R . 14.03.21.0003.01 d d t - a f t ât f a ; -¥ £ -d < a < d £ ¥ -d 14.03.21.0004.01 à d H L H L H L d¢ t - a f t ât - f ¢ a ; -¥ £ -d < a < d £ ¥ -d 14.03.21.0005.01 à ¥ ¶Hm d t L ¶nH dL x - t H L¶m+n d x + + ât ; m Î N n Î N m n -¥ ¶t ¶t ¶xm+n H L H L H L Integralà transforms ì Fourier exp transforms 14.03.22.0001.01 1 Ft d t z 2 p 14.03.22.0006.01 @ H LD H L ãä a x Ft d t - a x 2 p 14.03.22.0007.01 @ H LD H L ¶n d t -ä n xn Ft x ; n Î N n ¶t 2 p H L H L B F H L http://functions.wolfram.com 6 14.03.22.0008.01 1 x Ft DiracComb t x DiracComb 2 p 2 p Inverse@ FourierH LD H L exp transforms 14.03.22.0002.01 1 -1 Ft d t z 2 p Fourier@ H LD cosH L transforms 14.03.22.0003.01 2 Fct d t z p Fourier@ H LD HsinL transforms 14.03.22.0004.01 Fst d t z 0 Laplace transforms @ H LD H L 14.03.22.0005.01 Lt d t z 1 14.03.22.0009.01 -a x Lt@dHtL-D HaL x ã q a 14.03.22.0010.01 ¶n d t - a @ H LD H L -aHx L n + Lt x ã x q a ; n Î N ¶tn H L SumB matioFnH L H L Infinite summation 14.03.23.0001.01 ¥ d x - k DiracComb x k=-¥ 14.03.23.0002.01 â H L H L ¥ 1 ¥ 2 k p x ä d x - t k ã t k=-¥ t k=-¥ 14.03.23.0003.01 â H L â ¥ 1 ¥ 2 k p x d x - t k 1 + 2 cos k=-¥ t k=1 t â H L â http://functions.wolfram.com 7 14.03.23.0004.01 ¥ ¶n d x - k ¥ p n 2 2 p n kn cos + 2 k p x ; n Î N+ n k=-¥ ¶x k=1 2 H L â H L â Representations through more general functions Through Meijer G Classical cases for the direct function itself 14.03.26.0001.01 0,0 d x G0,0 1 - x ; x Î R x < 2 14.03.26.0002.01 H L 0,0 ß d x G0,0 x + 1 ; x Î R x > -2 RepresentationsH L throughß equivalent functions 14.03.27.0001.01 d x q¢ x ; x ¹ 0 14.03.27.0003.01 ¢ dHxL q HxL 14.03.27.0002.01 dHxL d Hx1L, x2, ¼, xn ; x1 x n 1 TheH oL reHms L ì Sokhotskii's formulas 1 1 lim ¡ä p d x + P ¶®0 x ± ä ¶ x Green's functionH ofL one linear differential operator ` ` Let Lx be a linear differential operator. The fundamental solution G x - x (also called Green's function) of Lx ` ` fulfills the equation Lx G x - x d x - x . Then the solution to the equation Lx y x f x can be represented in the form y x f x G x - x âx. H L H L H L H L H L The left eigenstates of the Fröbenius-Perron operator H L Ù H L H L n-1 n-1 n-1 + The functional yn x -1 d x - 1 - d x ; n Î N are the left eigenstates of the Fröbenius-Perron operator for the r-adic map xn+1 r xn mod 1. H L H L H L I H L H LM Poincaré-Bertrand theorem http://functions.wolfram.com 8 1 1 1 1 2 lim P + ä p s1 d x1 P + ä p s2 d x2 + p d x1 d x2 ; s1, s2 ±1 ¶ 1®0 x1 - ä s1 ¶ x2 - ä s2 ¶ x1 x2 ¶2®0 The generalized solutions of the linearH Ldifferential operatorsH L withH L singularH L coefficients Linear differential operators with singular coefficients can have generalized solutions.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us