Quick viewing(Text Mode)

Diracdelta.Pdf

Diracdelta.Pdf

DiracDelta

Notations

Traditional name

Dirac delta

Traditional notation

∆ x

Mathematica StandardForm notation H L DiracDelta x

Primary definition@ D

14.03.02.0001.01 1 ¶ ∆ x Š lim ; x Î R Π ¶®0 x2 + ¶2

H L  Specific values

Specialized values

14.03.03.0001.01 ∆ x Š 0 ; x ¹ 0

Values at fixed points H L  14.03.03.0002.01 ∆ 0 Š ¥

GeneralH L characteristics

Domain and analyticity

∆ x is a non-analytical function; it is defined for x Î R.

14.03.04.0001.01 x™∆ x › R™ 0, ¥ H L Symmetries and periodicities H L 8 < http://functions.wolfram.com 2

Parity

∆ x is an even generalized function.

14.03.04.0002.01 ∆ -x Š ∆ x H L Periodicity H L H L No periodicity

Series representations

Exponential Fourier series

14.03.06.0001.01 1 ¥ ∆ x Š ãä k x ; - Π < x < Π 2 Π k=-¥

14.03.06.0002.01 H L ⠐ 1 1 ¥ ∆ x Š + cos k x ; - Π < x < Π 2 Π Π k=1

14.03.06.0003.01 H L â H L  1 ¥ k Π x k Π y ∆ x - y ‡ sin sin ; L Î R L > 0 L k=1 L L

H L ⠐ ß representations

On the real axis

Of the direct function

14.03.07.0001.01 1 ¥ ∆ x Š ãä t x ât 2 Π -¥

14.03.07.0002.01 H L 1 ॠä ∆ x Š ãä t x Θ t ât - Π -¥ Π x

14.03.07.0003.01 H L 1 à ¥ H L ∆ x ‡ cos x t ât Π -¥

14.03.07.0004.01 H L 2 à ¥ H L ∆ x ‡ cos x t ât Π 0

14.03.07.0005.01 ¶H∆Lx à 1 H ¥L ‡ - t ãä x t ât ¶x 2 Π ä -¥

H L à http://functions.wolfram.com 3

14.03.07.0006.01 ¶∆ x 1 ¥ ‡ t ã-ä x t ât ¶x 2 Π ä -¥

H L Limit representationsà

14.03.09.0001.01 1 ∆ x ‡ lim Θ x + 1 Θ 1 - x ¶ x ¶-1 ¶®+0 2

14.03.09.0014.01

H L 2 l +H 1 !!L H lL ¤ ∆ x Š lim 1 - z2 ¶®¥ 2l+1 l!

14.03.09.0002.01H L H L x I M 1 - ∆ x Š lim ã ¶ ¶®0 2 ¶ ¤

14.03.09.0003.01

H L x2 1 - ∆ x Š lim ã 4 ¶ ¶®+0 2 Π ¶

14.03.09.0013.01 H L 1 ä x2 ∆ x Š lim ã 2 ¶ ¶®+0 2 Πä ¶

14.03.09.0004.01 H L 1 x ∆ x Š lim sin ¶®0 Π ¶ ¶

14.03.09.0005.01 H L 1 1 ∆ x Š lim sin x n + n®¥ 2 Π sin x 2 2

14.03.09.0006.01 H L 1 ∆ x Š lim I M ¶®0 2 ¶ cosh2 x ¶

H L 14.03.09.0007.01 ∆ x Š lim log cothJa xN a®¥

14.03.09.0008.01 H L 1 H x H L¤L ∆ x Š lim Ai ¶®0 ¶ ¶

14.03.09.0009.01 H L 1 x + 1 ∆ x Š lim J 1 ¶®0 ¶ ¶ ¶

14.03.09.0010.01

H L x2 1 - 2 x ¶ ∆ x Š lim ã Ln ; n Î N ¶®0 ¶ ¶

H L  http://functions.wolfram.com 4

14.03.09.0011.01 a ∆¢ x Š lim a®¥ sinh a x

14.03.09.0012.01 n H L x2 1 - 1 x n H L ¶ + ∆ x Š lim ã - Hn ; n Î N ¶®+0 Π ¶ ¶ ¶ H L H L  Transformations

Transformations and argument simplifications

14.03.16.0001.01 ∆ x ∆ a x Š ; a Î R a

H L H L  Identitie s¤

Functional identities

14.03.17.0001.01 n ∆ x - xj ¢ ∆ f x Š ; f xj Š 0 f xj ¹ 0 ¢ j=1 f xj I M 14.03.17.0002.01 H H LL ⠐ I M ì I M ∆ x1 - x0 ∆ x2 ¡- xI0 MŠ¥ ∆ x1 - x0 ∆ x2 - x1

DifHferenL tHiationL H L H L

Symbolic differentiation

In a distributional sense, for x Î R :

14.03.20.0001.01 ∆ n -x Š -1 n ∆ n x ; n Î N

H L 14.03.20.0002.01H L n m x ∆H Lx ŠH 0 L; m ÎHZL  n Î Z 0 £ m < n

H L 14.03.20.0003.01 n n n x ∆ HxL Š -1 n! ∆ xß ; n Î ßN

H L 14.03.20.0004.01 -1 n m! xn ∆ m HxL Š H L H∆ mL-n x ; m Î Z n Î Z 0 £ n < m m - n ! H L H L 14.03.20.0005.01H L H L m H L  m ß ß f x ∆ m x -HΞ = -L 1 m -1 k f m-k Ξ ∆ k x - Ξ ; m Î N k k=0 H L H L H L H L H L H L âH L H L H L  http://functions.wolfram.com 5

14.03.20.0006.01 ∆ n a x ‡ a-n-1 ∆ n x ; n Î N+

H L H L IntegH raL tion H L 

Indefinite integration

Involving only one direct function

14.03.21.0001.02 ∆ x â x ‡ Θ x

Definiteà H L integrationH L For the direct function itself

14.03.21.0002.01 ¥ ∆ t ât Š 1 -¥

Involving the direct function à H L In the following formulas a Î R .

14.03.21.0003.01 d ∆ t - a f t ât Š f a ; -¥ £ -d < a < d £ ¥ -d

14.03.21.0004.01 à d H L H L H L  ∆¢ t - a f t ât Š - f ¢ a ; -¥ £ -d < a < d £ ¥ -d

14.03.21.0005.01 à ¥ ¶Hm ∆ t L ¶nH ∆L x - t H L¶m+n ∆ x ât ‡ ; m Î N+ n Î N+ m n -¥ ¶t ¶t ¶xm+n

H L H L H L Integralà transforms  ì

Fourier exp transforms

14.03.22.0001.01 1 Ft ∆ t z Š 2 Π

14.03.22.0006.01 @ H LD H L ãä a x Ft ∆ t - a x ‡ 2 Π

14.03.22.0007.01 @ H LD H L ¶n ∆ t -ä n xn Ft x ‡ ; n Î N n ¶t 2 Π H L H L B F H L  http://functions.wolfram.com 6

14.03.22.0008.01 1 x Ft DiracComb t x ‡ DiracComb 2 Π 2 Π

Inverse@ FourierH LD H L exp transforms

14.03.22.0002.01 1 -1 Ft ∆ t z Š 2 Π

Fourier@ H LD cosH L transforms

14.03.22.0003.01 2 Fct ∆ t z Š Π

Fourier@ H LD HsinL transforms

14.03.22.0004.01

Fst ∆ t z Š 0

Laplace transforms @ H LD H L 14.03.22.0005.01

Lt ∆ t z Š 1

14.03.22.0009.01 -a x Lt@∆HtL-D HaL x ‡ ã Θ a

14.03.22.0010.01 ¶n ∆ t - a @ H LD H L -aHx L n + Lt x ‡ ã x Θ a ; n Î N ¶tn

H L SumB matioFnH L H L 

Infinite summation

14.03.23.0001.01 ¥ ∆ x - k ‡ DiracComb x k=-¥

14.03.23.0002.01 â H L H L ¥ 1 ¥ 2 k Π x ä ∆ x - t k ‡ ã t k=-¥ t k=-¥

14.03.23.0003.01 â H L â ¥ 1 ¥ 2 k Π x ∆ x - t k ‡ 1 + 2 cos k=-¥ t k=1 t

â H L â http://functions.wolfram.com 7

14.03.23.0004.01 ¥ ¶n ∆ x - k ¥ Π n ‡ 2 2 Π n kn cos + 2 k Π x ; n Î N+ n k=-¥ ¶x k=1 2 H L â H L ⠐ Representations through more general functions

Through Meijer G

Classical cases for the direct function itself

14.03.26.0001.01

0,0 ∆ x Š G0,0 1 - x ; x Î R x < 2

14.03.26.0002.01

H L 0,0  ß ∆ x Š G0,0 x + 1 ; x Î R x > -2

RepresentationsH L  throughß equivalent functions

14.03.27.0001.01 ∆ x Š Θ¢ x ; x ¹ 0

14.03.27.0003.01 ¢ ∆HxL ‡ Θ HxL 

14.03.27.0002.01 ∆HxL Š ∆ Hx1L, x2, ¼, xn ; x1 Š x n Š 1

TheH oL reHms L  ì

Sokhotskii's formulas 1 1 lim Š ¡ä Π ∆ x + P ¶®0 x ± ä ¶ x

Green's functionH ofL one linear differential ` ` Let Lx be a linear differential operator. The G x - Ξ (also called Green's function) of Lx ` ` fulfills the equation Lx G x - Ξ Š ∆ x - Ξ . Then the solution to the equation Lx y x Š f x can be represented in the form y x Š f Ξ G x - Ξ âΞ. H L H L H L H L H L The left eigenstates of the Fröbenius-Perron operator H L Ù H L H L n-1 n-1 n-1 + The functional Ψn x Š -1 ∆ x - 1 - ∆ x ; n Î N are the left eigenstates of the Fröbenius-Perron

operator for the r-adic map xn+1 Š r xn mod 1. H L H L H L I H L H LM  Poincaré-Bertrand theorem http://functions.wolfram.com 8

1 1 1 1 2 lim Š P + ä Π s1 ∆ x1 P + ä Π s2 ∆ x2 + Π ∆ x1 ∆ x2 ; s1, s2 Š ±1 ¶ 1®0 x1 - ä s1 ¶ x2 - ä s2 ¶ x1 x2 ¶2®0

The generalized solutions of the linearH Ldifferential operatorsH L withH L singularH L  coefficients

Linear differential operators with singular coefficients can have generalized solutions. For the hypergeometric x 1 - x y² x + Γ - Α + Β + 1 x y¢ x - Α Β y x Š 0 for Α, Β, Γ Î N+, Α ³ Γ > Β it can be presented in the form

Γ-Β-1 -1 k HΒ - Γ -L 1 H L H H ¥ L-1L k HΑL- Γ - 1 H L k Β+k-1 k Β+k-1 y x = c1 ∆ x + c2 ∆ x k=0 k! Β - Α - 1 k k=0 k! Α - Β - 1 k H L H L H L H L H L H L TheH L functionalâ of a functionH L â H L H L H L ∆ f x The functional derivative of a function f x is Š ∆ x - y . ∆ f y

H L H L History H L H L

Ð O. Heaviside (1893Ð1895) Ð G. Kirchhoff (1891) Ð P. A. M. Dirac (1926) Ð L. Schwartz (1945). http://functions.wolfram.com 9

Copyright

This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a key to the notations used here, see http://functions.wolfram.com/Notations/.

Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example: http://functions.wolfram.com/Constants/E/

To refer to a particular formula, cite functions.wolfram.com followed by the citation number. e.g.: http://functions.wolfram.com/01.03.03.0001.01

This document is currently in a preliminary form. If you have comments or suggestions, please email [email protected].

© 2001-2008, Wolfram Research, Inc.