Gratings: Amplitude, Phase, Sinusoidal, Binary

Gratings: Amplitude, Phase, Sinusoidal, Binary

Today • Gratings: – Sinusoidal amplitude grating – Sinusoidal phase grating – in general: spatially periodic thin transparency Wednesday • Fraunhofer diffraction • Fraunhofer patterns of typical apertures • Spatial frequencies and Fourier transforms MIT 2.71/2.710 04/06/09 wk9-a- 1 Gratings Amplitude grating Phase grating 1 1 0.75 0.75 | [a.u.] | [a.u.] t 0.5 t 0.5 |g |g 0.25 0.25 0 0 −30 −20 −10 0 10 20 30 −30 −20 −10 0 10 20 30 x [λ] x [λ] pi pi pi/2 pi/2 ) [rad] t ) [rad] t 0 0 −pi/2 phase(g −pi/2 phase(g −pi −pi −30 −20 −10 0 10 20 30 −30 −20 −10 0 10 20 30 x [λ] x [λ] Λ: period; m: contrast; φ: phase shift Λ: period; m: phase contrast; φ: phase shift MIT 2.71/2.710 04/06/09 wk9-a- 2 Gratings Amplitude grating Phase grating x x y z y z MIT 2.71/2.710 04/06/09 wk9-a- 3 Sinusoidal amplitude grating … OPLD = Λsin θ constructive interference if OPLD = qλ (q integer) st +1 order Only the n=0th and n=±1st diffraction orders are generated The n=0th diffraction order Λ θ is also known as the DC term incident –θ plane wave −1st order u : Grating 0 spatial … period frequency MIT 2.71/2.710 04/06/09 wk9-a- 4 Sinusoidal amplitude grating … +1st order Λ θ 0th order (or DC term) incident –θ plane diffraction angle wave -1st order spatial frequency … diffraction efficiencies MIT 2.71/2.710 04/06/09 wk9-a- 5 Sinusoidal phase grating s q=+5 “surface relief” grating q=+4 Transmission function q=+3 Λ q=+2 q=+1 (n 1)s m 2π − ≡ λ q=0 “phase contrast” incident q= –1 plane Useful math property: wave q= –2 + ∞ q= –3 exp iα sin (θ) = Jq (α) exp (iqθ) q= ! " #−∞ q= –4 st Jm: Bessel function of 1 kind, q= –5 m-th order glass refractive index n MIT 2.71/2.710 04/06/09 wk9-a- 6 Sinusoidal phase grating s q=+5 Field after grating is expressed as: q=+4 q=+3 Λ amplitude q=+2 q=+1 q=0 plane waves (diffraction orders), propagation angle incident q= –1 plane wave q= –2 q= –3 The q-th exponential physically is q= –4 a plane wave propagating at angle θq q= –5 i.e. the q-th diffraction order glass refractive index n MIT 2.71/2.710 04/06/09 wk9-a- 7 Fresnel diffraction from a grating as a Fourier series More generally, a periodic transparency’s complex amplitude transmission may be s q=+5 expressed as a Fourier series expansion: q=+4 q=+3 Λ q=+2 amplitudes q=+1 q=0 incident q= –1 plane plane waves (diffraction orders), wave q= –2 propagation angle q= –3 q= –4 absorptive q= –5 diffraction efficiencies bands glass refractive index n MIT 2.71/2.710 04/06/09 wk9-a- 8 Example: binary phase grating 1 0.75 s | [a.u.] q=+5 t 0.5 |g 0.25 q=+4 0 −30 −20 −10 0 10 20 30 x [!] q=+3 pi Λ pi/2 q=+2 ) [rad] t 0 −pi/2 q=+1 phase(g Duty cycle = 0.5 −pi −30 −20 −10 0 10 20 30 x [!] q=0 incident q= –1 plane wave q= –2 q= –3 q= –4 q= –5 glass refractive index n MIT 2.71/2.710 04/06/09 wk9-a- 9 MIT OpenCourseWare http://ocw.mit.edu 2.71 / 2.710 Optics Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us