DAC Reconstruction Filter

DAC Reconstruction Filter

EE247 Lecture 17 DAC Converters (continued) – Reconstruction filter • DAC self calibration techniques – Current copiers – Dynamic element matching ADC Converters • Sampling – Sampling switch induced distortion – Sampling switch charge injection • Complementary switch • Use of dummy device • Bottom-plate switching EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 1 DAC Reconstruction Filter B fs/2 • Need for and 1 requirements depend 0.5 DAC Input on application 0 0 0.5 1 1.5 2 2.5 3 1 6 x 10 0.5 • Tasks: sinc 0 0 0.5 1 1.5 2 2.5 3 – Correct for sinc distortion 1 6 x 10 – Remove “aliases” 0.5 (stair-case DAC Output 0 0 0.5 1 1.5 2 2.5 3 approximation) Frequency 6 x 10 EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 2 Reconstruction Filter Options Digital SC CT DAC ZOH Filter Filter Filter • Digital and SC filter possible only in combination with oversampling (signal bandwidth B << fs/2) • Digital filter – Band limits the input signal à prevent aliasing – Could also provide high-frequency pre-emphasis to compensate in-band sinc amplitude droop associated with the inherent DAC ZOH function EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 3 DAC Implementation Examples • Untrimmed segmented – T. Miki et al, “An 80-MHz 8-bit CMOS D/A Converter,” JSSC December 1986, pp. 983 – A. Van den Bosch et al, “A 1-GSample/s Nyquist Current-Steering CMOS D/A Converter,” JSSC March 2001, pp. 315 • Current copiers: – D. W. J. Groeneveld et al, “A Self-Calibration Technique for Monolithic High-Resolution D/A Converters,” JSSC December 1989, pp. 1517 • Dynamic element matching: – R. J. van de Plassche, “Dynamic Element Matching for High- Accuracy Monolithic D/A Converters,” JSSC December 1976, pp. 795 EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 4 2m tech., 5Vsupply 8x8 array Segmented (6+2) EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 5 Two sources of systematic error: - Finite current source output resistance - Voltage drop due to finite ground bus resistance EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 6 Current-Switched DACs in CMOS VV- 2 Ik1 = ( GSM1 th) V=V-4RI,V=-V7RI I GSM2GSM1GSM3GSM1 out V=V-9RI,V=-V10RI GSM4GSM1GSM5GSM1 2 æö4RI VV- 2 1- VDD I21==kI( GSM2 th) ç÷ VV- èøGSM1 th 2I1 g = M1 I M2 M3 M4 M5 mM1 1 I I I I VV- 2 3 4 5 GSM1 th 2 æö4Rg mM1 ®I2=»II11ç÷1- (1-4Rgm ) èø2 M1 2 æö7Rg Rx4I Rx3I Rx2I RxI mM1 ®I3=»II11ç÷1- (1-7Rgm ) èø2 M1 2 æö9Rg mM1 Example: 5 unit element current sources ® I4=»II11ç÷1- (1-9Rgm ) èø2 M1 2 æö10Rg mM1 ®I5=»II11ç÷1- (1-10Rgm ) èø2 M1 •Assumption: RI is small compared to transistor gate overdrive à Desirable to have gm small EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 7 Current-Switched DACs in CMOS Example: INL of 7 unit element DAC 0.3 Sequential current source switching Symmetrical current source switching 0.2 0.1 INL [LSB] 0 -0.1 0 1 2 3 4 5 6 7 Input Example: 7 unit element current source DAC- assume gmxR=1/100 •If switching of current sources sequential (1-2-3-4-5-6-7) à INL= +0.25LSB •If switching of current sources symmetrical (4-3-5-2-6-7 ) à INL = +0.09, -0.058LSB EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 8 Current-Switched DACs in CMOS Example: DNL of 7 unit element DAC 0.2 0.1 0 DNL [LSB] -0.1 Sequential current source switching Symmetrical current source switching -0.2 1 2 3 4 5 6 7 Input Example: 7 unit element current source DAC- assume gmxR=1/100 •If switching of current sources sequential (1-2-3-4-5-6-7) à DNLmax= + 0.15LSB •If switching of current sources symmetrical (4-3-5-2-6-7 ) à DNL = + 0.15LSB EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 9 (5+5) More recent published DAC using symmetrical switching built in 0.35m/3V analog/1.9V digital, area x10 smaller compared to previous example EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 10 EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 11 16bit DAC (6+10)- MSB DAC uses calibrated current sources I/2 I/2 Current Divider I EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 12 EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 13 Current Divider Accuracy I/2 I/2 I/2+dId /2 I/2-dId /2 IId1+ d2 Id = M1 M2 M1 M2 2 dIII- d= d1d2 I I IIdd W Ideal Current dI2d éùæöd L Real Current =´+dVth Divider êúç÷W Divider IVV- èøL dGSth ëû M1& M2 mismatched àProblem: Device mismatch could severely limit DAC accuracy EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 14 EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 15 Dynamic Element Matching During F1 During F2 (1) (2) 1 I=1 I1( +D ) I=I1o1( -D ) 1 2 o1 1 2 Io/2 Io/2 (1) (2) 1 I=1 I1-D I=I1o1( +D ) I 2 2 o1( ) 2 2 1 I2 fclk II(1)+ (2) 22 / 2 error D1 I2 = 2 I (11-D) +( +D ) Io = o 11 22 Io »Dfor1 small 2 EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 16 EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 17 Dynamic Element Matching During F Io/2 During F1 2 Io/4 Io/4 I (1) 1 (2) 1 3 I4 I2 I1 = 2 Io (1+ D1 ) I1 = 2 Io (1- D1 ) (1) 1 (2) 1 fclk I2 = 2 Io (1- D1 ) I2 = 2 Io (1+ D1 ) (1) 1 (1) (2) 1 (2) I3 = 2 I1 (1+ D2 ) I3 = 2 I1 (1- D2 ) / 2 error D2 1 1 = 4 Io (1+ D1 )(1+ D2 ) = 4 Io (1- D1 )(1- D2 ) I1 I (1) + I (2) I = 3 3 3 2 f I (1+ D )(1+ D )+ (1- D )(1- D ) clk = o 1 2 1 2 4 2 Io = (1+ D1D2 ) 4 / 2 error D1 I 2 o E.g. D1 = D2 = 1% à matching error is (1%) = 0.01% EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 18 Summary D/A Converter • D/A architecture – Unit element – complexity proportional to 2B- excellent DNL – Binary weighted- complexity proportional to B- poor DNL – Segmented- unit element MSB(B1)+ binary weighted LSB(B2)à complexity B1 proportional (2 -1) + B2 – DNL compromise between the two • Static performance – Component matching • Dynamic performance – Glitches • DAC improvement techniques – Symmetrical DAC element switching rather than sequential switching – Current source self calibration – Dynamic element matching EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 19 MOS Sampling Circuits EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 20 Re-Cap Analog Input Analog Anti-Aliasing Preprocessing Filter A/D Sampling • How can we Conversion +Quantization 000 build circuits DSP ...001... 110 that "sample" D/A "Bits to Conversion Staircase" Analog Reconstruction Post processing Filter Analog Output EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 21 Ideal Sampling f1 • In an ideal world, vIN vOUT zero resistance S1 sampling switches C would close for the briefest instant to sample a continuous f1 voltage vIN onto the capacitor C T=1/fS • Not realizable! EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 22 Ideal T/H Sampling f1 vIN vOUT S1 C f1 T=1/fS • Vout tracks input when switch is closed • Grab exact value of Vin when switch opens • "Track and Hold" (T/H) (often called Sample & Hold!) EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 23 Ideal T/H Sampling Continuous time Time T/H signal (SD Signal) Clock DT Signal EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 24 Practical Sampling f1 vIN vOUT M1 C • Switch induced noise power à kT/C • Finite Rsw à limited bandwidth • Rsw = f(Vin) à distortion • Switch charge injection • Clock jitter EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 25 kT/C Noise k T D2 B £ C 12 2 æ 2B -1ö ç ÷ C ³ 12kBT ç ÷ è VFS ø In high resolution ADCs kT/C noise usually dominates overall error (power dissipation considerations). B Cmin (VFS = 1V) 8 0.003 pF 12 0.8 pF 14 13 pF 16 206 pF 20 52,800 pF EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 26 Acquisition Bandwidth • The resistance R of f switch S1 turns the 1 sampling network into a v lowpass filter with IN vOUT R S1 risetime = RC = t C • Assuming Vin is constant during the sampling period and C v (t) = v (1- e-t /t ) is initially discharged out in EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 27 Switch On-Resistance æö1 Vin-Vtout ç÷=<<D èø2 fs f1 -1 2 f t Ve s <<D in vIN vOUT S1 Worst Case: VVin= FS R T 1 C t <<- 2 ln(21B - ) 11 R <<- 2 fC B s ln(21- ) f1 Example: T=1/fS B = 14, C = 13pF, fs = 100MHz T/t >> 19.4, R << 40W EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 28 Switch On-Resistance WVæöDS 1 dID()triode ID()triode=mCoxç÷VGS-VVTH-@DS , Lèø2 RONdVDS VDS ®0 11 R == ON WW mmC(V-V) C(V--VV) oxLLGSthoxDDthin 1 for R = o W mC(VV- ) oxL DDth R R = o ON V 1- in VVDD- th EECS 247 Lecture 17: Data Converters © 2005 H.K.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    33 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us