
EE-612: Lecture 23: RF CMOS Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette, IN USA Fall 2008 NCN www.nanohub.org Lundstrom EE-612 F08 1 why analog /RF why CMOS? many applications involve analog / rf signals: 1) many natural signals are analog (sensors) 2) disk drive electronics 3) wireless receivers 4) optical receivers 5) microprocessors / memories CMOS: 1) many systems are both analog and digital 2) CMOS is the dominate technology for digital electronics 3) CMOS performance has recently become suitable for analog Reference: B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001. Lundstrom EE-612 F08 2 CMOS device metrics (digital) 1) on-current: ION 2) off-current: IOFF 3) subthreshold swing: S =∂(log10 I D ) ∂VGS VDS 4) device delay: τ = CGVDD ION 5) DIBL, etc. Lundstrom EE-612 F08 3 CMOS device metrics (analog) 1) transconductance: gm =∂I D ∂VGS VDS 2) output resistance: ro =∂I D ∂VDS VGS 3) fT and fmax: fT = 12π τ 4) noise, mismatch, I D linearity, etc. VDS Lundstrom EE-612 F08 4 outline 1) Introduction 2) Small signal model 3) Transconductance 4) Self-gain 5) Gain bandwidth product 6) Unity power gain 7) Noise, mismatch, linearity… 8) Examples Lundstrom EE-612 F08 5 small signal model i = I + i D D d i g id g d iG = IG + ig C υgs gs gmυgs s s id ∂I D id = gmυgs gm = ≈ υgs ∂VGS VDS (quasi-static assumption) Lundstrom EE-612 F08 6 additional parameters in the s.s. model rg r C S gd rD Csb Cdb Cgb gmb rB Lundstrom EE-612 F08 7 small signal model (ii) ro =∂I D ∂VDS gmb =∂I D ∂VBS VDS VDS C r gd g d g g υ + mb bs Cgs υ g υ r − gs m gs o Cgb Cdb s + C υ sb − sb b b Lundstrom EE-612 F08 8 outline 1) Introduction 2) Small signal model 3) Transconductance 4) Self-gain 5) Gain bandwidth product 6) Unity power gain 7) Noise, mismatch, linearity 8) Examples Lundstrom EE-612 F08 9 transconductance bipolar MOS (above VT , saturated) gm =∂I D ∂VGS gm =∂IC ∂VBE VDS VCE qVBE /kBT I D = WCoxυsat ()VGS − VT IC = IC 0e gm = WCoxυsat gm = IC (kBT / q) gm I D = 1 ()VGS − VT gm IC = 1 (kBT / q) -1 -1 gm I D = 11.1()− 0.17 ≈ 1 V gm IC = 1( 0.026)≈ 40 V (65 nm HP) Lundstrom EE-612 F08 10 MOSFET transconductance g m 65 nm 90 nm 130 nm gm = WCoxυsat VGS Tox scaling, high-k, mobility improvements (e.g. strain) increase gm. Lundstrom EE-612 F08 11 transconductance (subthreshold) bipolar MOS (below VT , saturated) g =∂I ∂V gm =∂I D ∂VGS m C BE V VDS CE qVGS /mkBT qVBE /kBT I D = IOFF e IC = IC 0e g = I k T / q gm = I D ()mkBT / q m C ( B ) g I = 1 k T / q gm I D = 1 ()mkBT / q m C ( B ) -1 -1 gm I D = 1 1.3() 0.026 ≈ 30 V gm IC = 1( 0.026)≈ 40 V Lundstrom EE-612 F08 12 gm / ID figure of merit g 1 40 m = I ()kBT / q BJT gm g 1 I D m = I D ()mkBT / q gm I D = 1 (VGS − VT ) MOSFET VGS (VBE ) B. Murmann, P. Nikaeen, D.J. Connelly, and R. W. Dutton, “Impact of Scaling in Analog Performance and Associated Modeling Needs, IEEE Trans. Electron Dev., 2006. Lundstrom EE-612 F08 13 Outline 1) Introduction 2) Small signal model 3) Transconductance 4) Self-gain 5) Gain bandwidth product 6) Maximum power gain 7) Noise, mismatch, linearity 8) Examples Lundstrom EE-612 F08 14 small signal gain VDD − id = gmυin RD υout =−gmυin RD + υout υin υout = Aυ =−gm RD υin Lundstrom EE-612 F08 15 effect of output resistance I D ro =∂I D ∂VDS VDS id g d υ C gs gs gmυgs ro s Aυ = −gm RD || ro VDS Lundstrom EE-612 F08 16 self-gain VDD high impedance current source υout Aυ (max)= −gmro υin ro Lundstrom EE-612 F08 17 self-gain for 65 nm digital CMOS 0.2 mA/μm g ≈ = 1mS/μm m 0.2 V 1.2 V r ≈ ≈ 7 Kž -μm o 0.18 mA/μm Aυ (max) = gmro ≈ 7 C.-H. Jan. et al., 2005 IEDM Lundstrom EE-612 F08 18 self-gain vs. scaling 50 40 Analog designers are frequently forced to use non-minimum length 30 (NML) devices. Self-gain 20 10 180 130 90 65 45 Technology node (nm) Lundstrom EE-612 F08 19 outline 1) Introduction 2) Small signal model 3) Transconductance 4) Self-gain 5) Gain bandwidth product 6) Unity power gain 7) Noise, mismatch, linearity 8) Examples Lundstrom EE-612 F08 20 short-current current gain iin g Cgd d rg gmυgs i ω r iout in () Cgs o s s i ≈ g υ out m gs g 1 i ≈ m i υ = i out in gs in jωCTOT jω ()Cgs + Cgd (should include Cgb too) Lundstrom EE-612 F08 21 gain-bandwidth product gm gm iout ≈ iin βω()T = 1 = jωCTOT ωT CTOT g βω ≈ m () gm ωCTOT fT = 2πCTOT 20log βω( ) = C − 20log ω β (dB) 10 10 gain falls at 20 dB per decade 0 log10 ω ωT ‘extrapolated ωT’ Lundstrom EE-612 F08 22 gain-bandwidth product (ii) gm ωT = CTOT g ≈ WC υ m ox SAT ωT (fT) is independent of W and increases as channel CTOT ≈ WLCox length, L, decreases υSAT 1 ωT ≈ = L tt Lundstrom EE-612 F08 23 fT vs. scaling gm 1 fT = ~ 300 2π CTOT 2π tt 250 200 (GHz) T f 150 100 180 130 90 65 45 Technology node (nm) Lundstrom EE-612 F08 24 gm / ID x fT gm good for low power good for high freq fT I D “sweet spot” V − V ≈ 100 mV 30 ( GS T ) ()gm I D × fT VT VGS (VBE ) B. Murmann, P. Nikaeen, D.J. Connelly, and R. W. Dutton, “Impact of Scaling in Analog Performance and Associated Modeling Needs, IEEE Trans. Electron Dev., 2006. Lundstrom EE-612 F08 25 outline 1) Introduction 2) Small signal model 3) Transconductance 4) Self-gain 5) Gain bandwidth product 6) Unity power gain 7) Noise, mismatch, linearity 8) Examples Lundstrom EE-612 F08 26 fmax g ωT m f ≈ fT = MAX 2πC ⎛ 1 ⎞ TOT 4r + ω C g ⎝⎜ r T gd ⎠⎟ insensitive to rg and ro o independent of W sensitive to channel length scaling parasitics -r ~W increases fT g -ro ~ 1/W -Cgd ~W another figure of merit is f , MAX f ~ 1/W, need small W the maximum frequency of MAX oscillation or the unity power gain channel length scaling increases rg and lowers ro Lundstrom EE-612 F08 27 outline 1) Introduction 2) Small signal model 3) Transconductance 4) Self-gain 5) Gain bandwidth product 6) Unity power gain 7) Noise, mismatch, linearity… 8) Examples Lundstrom EE-612 F08 28 noise iD (t) i 2 2 VD n in I D 2 in = Si (f )Δf IG VS t (ps) Lundstrom EE-612 F08 29 thermal noise thermal noise Johnson noise RD − + R 2 R Vn G 2 2 in = 4kBTγ gm Vn = S f ()f Δf = 4kBTRΔf “white noise” RS Lundstrom EE-612 F08 30 1/f “flicker” noise polysilicon 1 f S f (f ) SiO2 thermal dangling bonds fC f silicon “traps” corner frequency fC ≈ 100 kHz Lundstrom EE-612 F08 31 mismatch differential pair analog circuits make use of matched transistors sources of mismatch: -variations in geometry M1 M 2 -ΔVT, ΔTox , … -thermal effects, etc. K ΔA = WL dealing with mismatch: -circuit design -careful layout Lundstrom EE-612 F08 32 linearity VDD Δυ D = out max υ out max υout RD υ out max υout Δυ out max υin jωt e υ υ in max in (below threshold) Lundstrom EE-612 F08 33 harmonic distortion VDD R D jωt j 2ωt j 3ωt A1e + A2e + A3e + ... υout ∂I 1 ∂2 I 1 ∂3I i = D υ + D υ 2 + D υ 3 + ... υin d gs 2 gs 3 gs ∂Vgs 2! ∂Vgs 3! ∂Vgs i = g υ + g υ 2 + g υ 3 + ... e jωt d m1 gs m2 gs m2 gs VIP2 VIP3 extrapolated gate voltage amplitude at which the amplitude of the harmonic = amplitude of fundamental Lundstrom EE-612 F08 34 distortion and the devices VDD jωt j 2ωt j 3ωt A1e + A2e + A3e + ... 2 3 ∂I D 1 ∂ I D 2 1 ∂ I D 3 RD id = υgs + 2 υgs + 3 υgs + ... ∂Vgs 2! ∂Vgs 3! ∂Vgs υout υ in α I D ~ (VGS − VT ) (above threshold) jωt e DIBL qVGS /kBT I D ~ e (below threshold) Lundstrom EE-612 F08 35 outline 1) Introduction 2) Small signal model 3) Transconductance 4) Self-gain 5) Gain bandwidth product 6) Unity power gain 7) Noise, mismatch, linearity… 8) Recent examples Lundstrom EE-612 F08 36 IEDM 2007 “Record RF Performance of 45-nm SOI CMOS Technology,” by Sungjae Lee, et al., IBM. 45 nm SOI technology 1.16 nm gate oxide strained Si technology Lundstrom EE-612 F08 37 Sungjae Lee, et al. IEDM 2007 1 fT ≈ 2π tt t < 0.33 ps 6 tN υ N > 8.8 × 10 cm/s ttP < 0.46 ps υ P > 6.7 cm/s Lundstrom EE-612 F08 38 Sungjae Lee, et al. IEDM 2007 1 fT = 2π tt L t = t υ L = 10 nm, υ = 107 cm/s → tt = 0.1 ps, fT = 1.6THz gm fT = 2π CTOT Lundstrom EE-612 F08 39 Sungjae Lee, et al.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages45 Page
-
File Size-