EE-612: Lecture 20: MOSFET Leakage Mark Lundstrom Electrical

EE-612: Lecture 20: MOSFET Leakage Mark Lundstrom Electrical

EE-612: Lecture 23: RF CMOS Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette, IN USA Fall 2008 NCN www.nanohub.org Lundstrom EE-612 F08 1 why analog /RF why CMOS? many applications involve analog / rf signals: 1) many natural signals are analog (sensors) 2) disk drive electronics 3) wireless receivers 4) optical receivers 5) microprocessors / memories CMOS: 1) many systems are both analog and digital 2) CMOS is the dominate technology for digital electronics 3) CMOS performance has recently become suitable for analog Reference: B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001. Lundstrom EE-612 F08 2 CMOS device metrics (digital) 1) on-current: ION 2) off-current: IOFF 3) subthreshold swing: S =∂(log10 I D ) ∂VGS VDS 4) device delay: τ = CGVDD ION 5) DIBL, etc. Lundstrom EE-612 F08 3 CMOS device metrics (analog) 1) transconductance: gm =∂I D ∂VGS VDS 2) output resistance: ro =∂I D ∂VDS VGS 3) fT and fmax: fT = 12π τ 4) noise, mismatch, I D linearity, etc. VDS Lundstrom EE-612 F08 4 outline 1) Introduction 2) Small signal model 3) Transconductance 4) Self-gain 5) Gain bandwidth product 6) Unity power gain 7) Noise, mismatch, linearity… 8) Examples Lundstrom EE-612 F08 5 small signal model i = I + i D D d i g id g d iG = IG + ig C υgs gs gmυgs s s id ∂I D id = gmυgs gm = ≈ υgs ∂VGS VDS (quasi-static assumption) Lundstrom EE-612 F08 6 additional parameters in the s.s. model rg r C S gd rD Csb Cdb Cgb gmb rB Lundstrom EE-612 F08 7 small signal model (ii) ro =∂I D ∂VDS gmb =∂I D ∂VBS VDS VDS C r gd g d g g υ + mb bs Cgs υ g υ r − gs m gs o Cgb Cdb s + C υ sb − sb b b Lundstrom EE-612 F08 8 outline 1) Introduction 2) Small signal model 3) Transconductance 4) Self-gain 5) Gain bandwidth product 6) Unity power gain 7) Noise, mismatch, linearity 8) Examples Lundstrom EE-612 F08 9 transconductance bipolar MOS (above VT , saturated) gm =∂I D ∂VGS gm =∂IC ∂VBE VDS VCE qVBE /kBT I D = WCoxυsat ()VGS − VT IC = IC 0e gm = WCoxυsat gm = IC (kBT / q) gm I D = 1 ()VGS − VT gm IC = 1 (kBT / q) -1 -1 gm I D = 11.1()− 0.17 ≈ 1 V gm IC = 1( 0.026)≈ 40 V (65 nm HP) Lundstrom EE-612 F08 10 MOSFET transconductance g m 65 nm 90 nm 130 nm gm = WCoxυsat VGS Tox scaling, high-k, mobility improvements (e.g. strain) increase gm. Lundstrom EE-612 F08 11 transconductance (subthreshold) bipolar MOS (below VT , saturated) g =∂I ∂V gm =∂I D ∂VGS m C BE V VDS CE qVGS /mkBT qVBE /kBT I D = IOFF e IC = IC 0e g = I k T / q gm = I D ()mkBT / q m C ( B ) g I = 1 k T / q gm I D = 1 ()mkBT / q m C ( B ) -1 -1 gm I D = 1 1.3() 0.026 ≈ 30 V gm IC = 1( 0.026)≈ 40 V Lundstrom EE-612 F08 12 gm / ID figure of merit g 1 40 m = I ()kBT / q BJT gm g 1 I D m = I D ()mkBT / q gm I D = 1 (VGS − VT ) MOSFET VGS (VBE ) B. Murmann, P. Nikaeen, D.J. Connelly, and R. W. Dutton, “Impact of Scaling in Analog Performance and Associated Modeling Needs, IEEE Trans. Electron Dev., 2006. Lundstrom EE-612 F08 13 Outline 1) Introduction 2) Small signal model 3) Transconductance 4) Self-gain 5) Gain bandwidth product 6) Maximum power gain 7) Noise, mismatch, linearity 8) Examples Lundstrom EE-612 F08 14 small signal gain VDD − id = gmυin RD υout =−gmυin RD + υout υin υout = Aυ =−gm RD υin Lundstrom EE-612 F08 15 effect of output resistance I D ro =∂I D ∂VDS VDS id g d υ C gs gs gmυgs ro s Aυ = −gm RD || ro VDS Lundstrom EE-612 F08 16 self-gain VDD high impedance current source υout Aυ (max)= −gmro υin ro Lundstrom EE-612 F08 17 self-gain for 65 nm digital CMOS 0.2 mA/μm g ≈ = 1mS/μm m 0.2 V 1.2 V r ≈ ≈ 7 Kž -μm o 0.18 mA/μm Aυ (max) = gmro ≈ 7 C.-H. Jan. et al., 2005 IEDM Lundstrom EE-612 F08 18 self-gain vs. scaling 50 40 Analog designers are frequently forced to use non-minimum length 30 (NML) devices. Self-gain 20 10 180 130 90 65 45 Technology node (nm) Lundstrom EE-612 F08 19 outline 1) Introduction 2) Small signal model 3) Transconductance 4) Self-gain 5) Gain bandwidth product 6) Unity power gain 7) Noise, mismatch, linearity 8) Examples Lundstrom EE-612 F08 20 short-current current gain iin g Cgd d rg gmυgs i ω r iout in () Cgs o s s i ≈ g υ out m gs g 1 i ≈ m i υ = i out in gs in jωCTOT jω ()Cgs + Cgd (should include Cgb too) Lundstrom EE-612 F08 21 gain-bandwidth product gm gm iout ≈ iin βω()T = 1 = jωCTOT ωT CTOT g βω ≈ m () gm ωCTOT fT = 2πCTOT 20log βω( ) = C − 20log ω β (dB) 10 10 gain falls at 20 dB per decade 0 log10 ω ωT ‘extrapolated ωT’ Lundstrom EE-612 F08 22 gain-bandwidth product (ii) gm ωT = CTOT g ≈ WC υ m ox SAT ωT (fT) is independent of W and increases as channel CTOT ≈ WLCox length, L, decreases υSAT 1 ωT ≈ = L tt Lundstrom EE-612 F08 23 fT vs. scaling gm 1 fT = ~ 300 2π CTOT 2π tt 250 200 (GHz) T f 150 100 180 130 90 65 45 Technology node (nm) Lundstrom EE-612 F08 24 gm / ID x fT gm good for low power good for high freq fT I D “sweet spot” V − V ≈ 100 mV 30 ( GS T ) ()gm I D × fT VT VGS (VBE ) B. Murmann, P. Nikaeen, D.J. Connelly, and R. W. Dutton, “Impact of Scaling in Analog Performance and Associated Modeling Needs, IEEE Trans. Electron Dev., 2006. Lundstrom EE-612 F08 25 outline 1) Introduction 2) Small signal model 3) Transconductance 4) Self-gain 5) Gain bandwidth product 6) Unity power gain 7) Noise, mismatch, linearity 8) Examples Lundstrom EE-612 F08 26 fmax g ωT m f ≈ fT = MAX 2πC ⎛ 1 ⎞ TOT 4r + ω C g ⎝⎜ r T gd ⎠⎟ insensitive to rg and ro o independent of W sensitive to channel length scaling parasitics -r ~W increases fT g -ro ~ 1/W -Cgd ~W another figure of merit is f , MAX f ~ 1/W, need small W the maximum frequency of MAX oscillation or the unity power gain channel length scaling increases rg and lowers ro Lundstrom EE-612 F08 27 outline 1) Introduction 2) Small signal model 3) Transconductance 4) Self-gain 5) Gain bandwidth product 6) Unity power gain 7) Noise, mismatch, linearity… 8) Examples Lundstrom EE-612 F08 28 noise iD (t) i 2 2 VD n in I D 2 in = Si (f )Δf IG VS t (ps) Lundstrom EE-612 F08 29 thermal noise thermal noise Johnson noise RD − + R 2 R Vn G 2 2 in = 4kBTγ gm Vn = S f ()f Δf = 4kBTRΔf “white noise” RS Lundstrom EE-612 F08 30 1/f “flicker” noise polysilicon 1 f S f (f ) SiO2 thermal dangling bonds fC f silicon “traps” corner frequency fC ≈ 100 kHz Lundstrom EE-612 F08 31 mismatch differential pair analog circuits make use of matched transistors sources of mismatch: -variations in geometry M1 M 2 -ΔVT, ΔTox , … -thermal effects, etc. K ΔA = WL dealing with mismatch: -circuit design -careful layout Lundstrom EE-612 F08 32 linearity VDD Δυ D = out max υ out max υout RD υ out max υout Δυ out max υin jωt e υ υ in max in (below threshold) Lundstrom EE-612 F08 33 harmonic distortion VDD R D jωt j 2ωt j 3ωt A1e + A2e + A3e + ... υout ∂I 1 ∂2 I 1 ∂3I i = D υ + D υ 2 + D υ 3 + ... υin d gs 2 gs 3 gs ∂Vgs 2! ∂Vgs 3! ∂Vgs i = g υ + g υ 2 + g υ 3 + ... e jωt d m1 gs m2 gs m2 gs VIP2 VIP3 extrapolated gate voltage amplitude at which the amplitude of the harmonic = amplitude of fundamental Lundstrom EE-612 F08 34 distortion and the devices VDD jωt j 2ωt j 3ωt A1e + A2e + A3e + ... 2 3 ∂I D 1 ∂ I D 2 1 ∂ I D 3 RD id = υgs + 2 υgs + 3 υgs + ... ∂Vgs 2! ∂Vgs 3! ∂Vgs υout υ in α I D ~ (VGS − VT ) (above threshold) jωt e DIBL qVGS /kBT I D ~ e (below threshold) Lundstrom EE-612 F08 35 outline 1) Introduction 2) Small signal model 3) Transconductance 4) Self-gain 5) Gain bandwidth product 6) Unity power gain 7) Noise, mismatch, linearity… 8) Recent examples Lundstrom EE-612 F08 36 IEDM 2007 “Record RF Performance of 45-nm SOI CMOS Technology,” by Sungjae Lee, et al., IBM. 45 nm SOI technology 1.16 nm gate oxide strained Si technology Lundstrom EE-612 F08 37 Sungjae Lee, et al. IEDM 2007 1 fT ≈ 2π tt t < 0.33 ps 6 tN υ N > 8.8 × 10 cm/s ttP < 0.46 ps υ P > 6.7 cm/s Lundstrom EE-612 F08 38 Sungjae Lee, et al. IEDM 2007 1 fT = 2π tt L t = t υ L = 10 nm, υ = 107 cm/s → tt = 0.1 ps, fT = 1.6THz gm fT = 2π CTOT Lundstrom EE-612 F08 39 Sungjae Lee, et al.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    45 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us