A Theoretical Study of the Effect of Molecular Absorption and Re

A Theoretical Study of the Effect of Molecular Absorption and Re

A Theoretical Study of the Effect of Molecular Absorption and Re-radiation on Millimeter Wave andDiscovery Terahertz and Adaptation Wireless of NetworkingProcess Views THE UNIVERSITY OF NEW SOUTH WALES SYDNEY AUSTRALIA · DissertationA dissertation submitted submitted in fulfillment in fulfilment of the requirements for the degree of of the requirements for the degree of Doctor of Philosophy in Doctor of Philosophy Computer Science and Engineering in ComputerHamid Science Reza Motahari and Nezhad Engineering Supervisor: Prof. Boualem Benatallah Sayed Amir Hoseini 12 February 2008 Supervisor: Professor Mahbub Hassan Co-supervisor (CSIRO): Dr Ming Ding Co-supervisor (UNSW): A.Professor Chun Tung Chou November 2017 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Hoseini First name: Sayed Amir Other name/s: Abbreviation for degree as given in the University calendar: PHD School: Computer Science and Engineering Faculty: Engineering Title: Theoretical Study of the Effect of Molecular Absorption and Re-radiation on Millimeter Wave and Terahertz Wireless Networking Abstract 350 words maximum: The rapidly growing demand for higher networking capacity and data rates is forcing researchers to explore the unused spectrum in the higher frequency bands. Two such bands, the millimeter wave (mmWave), ranging from 30 GHz to 300 GHz, and the Terahertz (THz) band, ranging from 0.1 THz to 10 THz, are currently being investigated for possible use in future networks. Because many atmospheric molecules have their natural resonance frequencies in these bands, it is important to understand the effects of molecular absorption and re-radiation on the wireless networking performance in such high frequency bands. Building on the recently discovered molecular absorption models, this thesis conducts a theoretical study on the effect of molecular absorption and re-radiation on both single-antenna and multi-antenna wireless communications. For the single-antenna communication, the study focuses on quantifying the temporal and spatial variation of path loss and noise, which is caused by variation in the molecular composition in the air. In particular, it studies the extent of spatio-temporal variation of mmWave channels in three largest cities of Australia by investigating the hourly air quality and weather data over 12 months. The study finds that mmWave channels experience significant variation in both space and time domains, which causes undesirable network capacity fluctuation in various places and hours. For the multi-antenna communication, the study yields a new theoretical discovery that the MIMO capacity can be significantly influenced by atmosphere molecules. In more detail, some common atmosphere molecules, such as Oxygen and water, can absorb and re-radiate energy in their natural resonance frequencies, such as 60 GHz, 120GHz and 180 GHz, which belong to the mmWave spectrum. Such phenomenon can provide equivalent non-Lineof- Sight (NLoS) paths in an environment that is dominated by Line-of-Sight (LoS) transmissions, and thus greatly improve the spatial multiplexing and diversity of a MIMO mmWave system. Finally, the performance of two main MIMO techniques, beamforming and multiplexing, in the mmWave/THz band is studied. Our results reveal a surprising observation that the MIMO multiplexing could be a better choice than the MIMO beamforming under certain conditions in multiple bands. We believe that our findings will open the door for a new direction of research and development toward the feasibility of communication in mmWave and THz spectrum. Declaration relating to disposition of project thesis/dissertation I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral theses only). …………………………………………………………… ……………………………………..……………… ……….……………………...…….… Signature Witness Signature Date The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circumstances and require the approval of the Dean of Graduate Research. FOR OFFICE USE ONLY Date of completion of requirements for Award: ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed …………………………………………….............. Date …………………………………………….............. COPYRIGHT STATEMENT ‘I hereby grant the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstract International (this is applicable to doctoral theses only). I have either used no substantial portions of copyright material in my thesis or I have obtained permission to use copyright material; where permission has not been granted I have applied/will apply for a partial restriction of the digital copy of my thesis or dissertation.' Signed ……………………………………………........................... Date ……………………………………………........................... AUTHENTICITY STATEMENT ‘I certify that the Library deposit digital copy is a direct equivalent of the final officially approved version of my thesis. No emendation of content has occurred and if there are any minor variations in formatting, they are the result of the conversion to digital format.’ Signed ……………………………………………........................... Date ……………………………………………........................... i ABSTRACT The rapidly growing demand for higher networking capacity and data rates is forcing researchers to explore the unused spectrum in the higher frequency bands. Two such bands, the millimeter wave (mmWave), ranging from 30 GHz to 300 GHz, and the Terahertz (THz) band, ranging from 0.1 THz to 10 THz, are currently being investigated for possible use in future networks. Because many atmospheric molecules have their natural resonant frequencies in these bands, it is important to understand the effects of molecular absorption and re-radiation on the wireless networking performance in such high frequency bands. Building on the recently discovered molecular absorption models, this thesis conducts a theoretical study on the effect of molecular absorption and re-radiation on both single-antenna and multi- antenna wireless communications. For the single-antenna communication, the study focuses on quantifying the temporal and spatial variation of path loss and noise, which is caused by variation in the molecular composition in the air. In particular, it studies the extent of spatio-temporal variation of mmWave channels in three largest cities of Australia by investigating the hourly air quality and weather data over 12 months. The study finds that mmWave channels experience significant variation in both space and time domains, which causes undesirable network capacity fluctuation in various places and hours. For the multi-antenna communication, the study yields a new theoretical discovery that the Multiple-Input and Multiple-Output (MIMO) capacity can be significantly influenced by atmosphere molecules. In more detail, some common atmosphere molecules, such as Oxygen and water, can absorb and re-radiate energy in their natural resonant frequencies, such as 60 GHz, 120GHz and 180 GHz, which belong to the mmWave spectrum. Such phenomenon can provide equivalent Non-Line-of-Sight (NLoS) paths in an environment that is dominated by Line-of-Sight (LoS) transmissions, and thus greatly improve the spatial multiplexing and diversity of a MIMO mmWave system. Finally, the performance of two main MIMO techniques, beamforming and multiplexing, in the terahertz band is studied. ii Our results reveal a surprising observation that the MIMO multiplexing could be a better choice than the MIMO beamforming under certain conditions in multiple THz bands. We believe that our findings will open the door for a new direction of research and development toward the feasibility of communication

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    121 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us