QCD Phase Diagram”, Copenhagen August 2001

QCD Phase Diagram”, Copenhagen August 2001

COLOR SUPERCONDUCTIVITY Massimo Mannarelli INFN-LNGS [email protected] GGI-Firenze Sept. 2012 venerdì 21 settembre 12 “Compact Stars in the QCD Phase Diagram”, Copenhagen August 2001 venerdì 21 settembre 12 Outline • Motivations • Superconductors • Color Superconductors • Low energy degrees of freedom • Crystalline color superconductors Reviews: hep-ph/0011333, hep-ph/0202037, 0709.4635 Lecture notes by Casalbuoni http://theory.fi.infn.it/casalbuoni/barcellona.pdf venerdì 21 settembre 12 MOTIVATIONS venerdì 21 settembre 12 QCD phase diagram T Quark Gluon Plasma (QGP) Tc Hadronic Color ? Superconductor (CSC) µ venerdì 21 settembre 12 QCD phase diagram T Quark Gluon Plasma (QGP) Tc Hadronic Color ? Superconductor (CSC) µ venerdì 21 settembre 12 QCD phase diagram T Quark Gluon Plasma (QGP) Tc Hadronic Color ? Superconductor (CSC) µ venerdì 21 settembre 12 QCD phase diagram T Quark Gluon Plasma (QGP) Tc Hadronic Color ? Superconductor (CSC) µ Compact stars venerdì 21 settembre 12 QCD phase diagram T Quark Gluon Plasma (QGP) Tc Hadronic Color ? Superconductor (CSC) µ Compact stars Warning: QCD is perturbative only at asymptotic energy scales venerdì 21 settembre 12 QCD phase diagram T Quark Gluon Plasma (QGP) Tc Hadronic Color ? Superconductor (CSC) µ Compact stars Warning: QCD is perturbative only at asymptotic energy scales HOT MATTER ENERGY-SCAN EMULATION RHIC RHIC Ultracold fermionic EXPERIMENTS LHC NA61/SHINE@CERN-SPS atoms CBM@FAIR/GSI MPD@NICA/JINR venerdì 21 settembre 12 Compact stars quark⌧hybrid traditional neutron star star N+e N+e+n n,p,e, µ n superfluid hyperon n d u c o c t neutron star with star e r i n p g pion condensate u n, s p,e p , µ r u,d,s o quarks t o , 2SC n , CFL s , H crust Fe color−superconducting 6 3 strange quark matter K 10 g/cm (u,d,s quarks) 11 10 g/cm 3 2SC CFL 14 3 CSL CFL−K + 10 g/cm gCFL 0 CFL−K LOFF 0 Hydrogen/He CFL− atmosphere strange star nucleon star R ~ 10 km F. Weber, Prog.Part.Nucl.Phys. 54 (2005) 193 venerdì 21 settembre 12 Compact stars quark⌧hybrid traditional neutron star star N+e “Probes” N+e+n n,p,e, µ n superfluid cooling hyperon n d u c o c t neutron star with star e r i n glitches p g pion condensate u n, s p,e p , µ r instabilities u,d,s o quarks t o n mass-radius , 2SC , CFL s , H crust magnetic field Fe color−superconducting 6 3 strange quark matter K 10 g/cm GW (u,d,s quarks) 11 10 g/cm 3 2SC ...... CFL 14 3 CSL CFL−K + 10 g/cm gCFL 0 CFL−K LOFF 0 Hydrogen/He CFL− atmosphere strange star nucleon star R ~ 10 km F. Weber, Prog.Part.Nucl.Phys. 54 (2005) 193 venerdì 21 settembre 12 Compact stars quark⌧hybrid traditional neutron star star N+e “Probes” N+e+n n,p,e, µ n superfluid cooling hyperon n d u c o c t neutron star with star e r i n glitches p g pion condensate u n, s p,e p , µ r instabilities u,d,s o quarks t o n mass-radius , 2SC , CFL s , H crust magnetic field Fe color−superconducting 6 3 strange quark matter K 10 g/cm GW (u,d,s quarks) 11 10 g/cm 3 2SC ...... CFL 14 3 CSL CFL−K + 10 g/cm gCFL 0 CFL−K LOFF 0 Hydrogen/He CFL− atmosphere strange star nucleon star R ~ 10 km F. Weber, Prog.Part.Nucl.Phys. 54 (2005) 193 Example PSR J1614-2230 mass M ~ 2 M⊙ Demorest et al Nature 467, (2010) 1081 hard to explain with quark matter models Bombaci et al. Phys. Rev. C 85, (2012) 55807 venerdì 21 settembre 12 SUPERCONDUCTORS In 1911, H.K. Onnes, cooling mercury, found almost no resistivity at T = 4.2 K. arbitrary units -D T CV ~ e CV ~T ê R ~ T3 T 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Tc venerdì 21 settembre 12 Superconductivity is a quantum phenomenon at the macroscopic scale venerdì 21 settembre 12 Superconductivity is a quantum phenomenon at the macroscopic scale T=0 BOSONS Bosons occupy the same quantum state: They “like” to move together, no dissipation 4He becomes superfluid at T ≃ 2.17 K, Kapitsa et al (1938) BEC venerdì 21 settembre 12 Superconductivity is a quantum phenomenon at the macroscopic scale T=0 BOSONS FERMIONS Bosons occupy the same quantum Fermions cannot occupy the same state: They “like” to move together, quantum state. A different theory of no dissipation superfluidity 4He becomes superfluid at 3He becomes superfluid at T ≃ 2.17 K, Kapitsa et al (1938) T ≃ 0.0025 K, Osheroff (1971) BEC BCS venerdì 21 settembre 12 Superconductivity is a quantum phenomenon at the macroscopic scale T=0 BOSONS FERMIONS Bosons occupy the same quantum Fermions cannot occupy the same state: They “like” to move together, quantum state. A different theory of no dissipation superfluidity 4He becomes superfluid at 3He becomes superfluid at T ≃ 2.17 K, Kapitsa et al (1938) T ≃ 0.0025 K, Osheroff (1971) BEC BCS venerdì 21 settembre 12 Superconductivity is a quantum phenomenon at the macroscopic scale T=0 BOSONS FERMIONS Bosons occupy the same quantum Fermions cannot occupy the same state: They “like” to move together, quantum state. A different theory of no dissipation superfluidity 4He becomes superfluid at 3He becomes superfluid at T ≃ 2.17 K, Kapitsa et al (1938) T ≃ 0.0025 K, Osheroff (1971) BEC ? BCS venerdì 21 settembre 12 BCS Theory Bardeen-Cooper-Schrieffer (BCS) in 1957 proposed a microscopic theory of fermionic superfluidity “active” Fermi sphere T=0 fermions PF “frozen” fermions venerdì 21 settembre 12 BCS Theory Bardeen-Cooper-Schrieffer (BCS) in 1957 proposed a microscopic theory of fermionic superfluidity “active” Fermi sphere T=0 fermions PF “frozen” fermions Cooper pairing : Any attractive interaction produces correlated pairs of “active” fermions Cooper pairs effectively behave as bosons and condense venerdì 21 settembre 12 BCS Theory Bardeen-Cooper-Schrieffer (BCS) in 1957 proposed a microscopic theory of fermionic superfluidity “active” Fermi sphere T=0 fermions PF “frozen” fermions Cooper pairing : Any attractive interaction produces correlated pairs of “active” fermions Cooper pairs effectively behave as bosons and condense It costs energy to break a Cooper pair E(p)= (✏(p) µ)2 +∆(p, T )2 quasiparticle dispersion law: − p venerdì 21 settembre 12 BCS Theory Bardeen-Cooper-Schrieffer (BCS) in 1957 proposed a microscopic theory of fermionic superfluidity “active” Fermi sphere T=0 fermions PF “frozen” fermions Cooper pairing : Any attractive interaction produces correlated pairs of “active” fermions Cooper pairs effectively behave as bosons and condense It costs energy to break a Cooper pair E(p)= (✏(p) µ)2 +∆(p, T )2 quasiparticle dispersion law: − p Increasing the temperature the coherence is lost at T 0.3∆ c ' 0 venerdì 21 settembre 12 Superfluid vs Superconductors Definitions Superfluid: frictionless fluid with potential flow v = �ϕ. Irrotational: �× v = 0 Superconductor: perfect diamagnet (Meissner effect) Cooper pairing is at the basis of both phenomena (for fermions) venerdì 21 settembre 12 Superfluid vs Superconductors Definitions Superfluid: frictionless fluid with potential flow v = �ϕ. Irrotational: �× v = 0 Superconductor: perfect diamagnet (Meissner effect) Cooper pairing is at the basis of both phenomena (for fermions) Superfluid Broken global symmetry Transport of the quantum numbers Goldstone boson ϕ of the broken group with (basically) no dissipation v = �ϕ venerdì 21 settembre 12 Superfluid vs Superconductors Definitions Superfluid: frictionless fluid with potential flow v = �ϕ. Irrotational: �× v = 0 Superconductor: perfect diamagnet (Meissner effect) Cooper pairing is at the basis of both phenomena (for fermions) Superfluid Broken global symmetry Transport of the quantum numbers Goldstone boson ϕ of the broken group with (basically) no dissipation v = �ϕ Superconductor Broken gauge symmetry Broken gauge fields with mass, M, Higgs mechanism penetrates for a length λ 1/M / venerdì 21 settembre 12 BCS-BEC crossover v correlation length ⇠ F ⇠ ∆ vs 1/3 average distance n− up down 1/3 ⇠ n− BCS fermi surface phenomenon venerdì 21 settembre 12 BCS-BEC crossover v correlation length ⇠ F ⇠ ∆ vs 1/3 average distance n− up down g weak 1/3 ⇠ n− BCS fermi surface phenomenon strong venerdì 21 settembre 12 BCS-BEC crossover v correlation length ⇠ F ⇠ ∆ vs 1/3 average distance n− up down g weak 1/3 ⇠ n− BCS fermi surface phenomenon 1/3 BCS-BEC crossover ⇠ n− depleting the Fermi sphere ⇠ strong venerdì 21 settembre 12 BCS-BEC crossover v correlation length ⇠ F ⇠ ∆ vs 1/3 average distance n− up down g weak 1/3 ⇠ n− BCS fermi surface phenomenon 1/3 BCS-BEC crossover ⇠ n− depleting the Fermi sphere ⇠ strong BEC 1/3 4 ⇠ n− equivalent to He ⌧ venerdì 21 settembre 12 COLOR SUPERCONDUCTIVITY venerdì 21 settembre 12 A bit of history • Quark matter inside compact stars, Ivanenko and Kurdgelaidze (1965), Paccini (1966) ... • Quark Cooper pairing was proposed by Ivanenko and Kurdgelaidze (1969) • With asymptotic freedom (1973) more robust results by Collins and Perry (1975), Baym and Chin (1976) • Classification of some color superconducting phases: Bailin and Love (1984) venerdì 21 settembre 12 A bit of history • Quark matter inside compact stars, Ivanenko and Kurdgelaidze (1965), Paccini (1966) ... • Quark Cooper pairing was proposed by Ivanenko and Kurdgelaidze (1969) • With asymptotic freedom (1973) more robust results by Collins and Perry (1975), Baym and Chin (1976) • Classification of some color superconducting phases: Bailin and Love (1984) Interesting studies but predicted small energy gaps ~ 10 ÷100 keV negligible phenomenological impact for compact stars venerdì 21 settembre 12 A bit of history • Quark matter inside compact stars, Ivanenko and Kurdgelaidze (1965), Paccini (1966) ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    90 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us