Design of a Radio Frequency Heating System For

Design of a Radio Frequency Heating System For

DESIGN OF A RADIO FREQUENCY HEATING SYSTEM FOR ELECTROLYTIC LIQUIDS AND SLUDGES by Md. Saimoom Ferdous B.Sc., Bangladesh University of Engineering and Technology, 2012 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE COLLEGE OF GRADUATE STUDIES (Electrical Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Okanagan) January 2015 © Md. Saimoom Ferdous, 2015 Abstract A radio frequency (RF) heating system has been designed to heat electrolytic liquids and sludges in a pressurized test vessel. The RF heating system is designed to heat a 400 ml load volume at a frequency of 13.56 MHz using a 1 kW RF generator. The primary application for the heating system is to conduct experimental work on the pretreatment of waste activated sludge, a byproduct of wastewater treatment plants. The dielectric properties of waste activated sludge were analyzed and it was determined that ionic conduction heating at a low frequency would be more efficient than microwave heating at a frequency of 2.45 GHz. The RF heating system was tested with sludge and salt water loads over a temperature range of 20°C to 120°C. Power transfer efficiency from the generator to the load was excellent and exceeded 86% over the entire temperature range for both loads. An important part of this work was the design of the RF applicator. The applicator consists of two circular electrodes mounted inside a Teflon cylinder to uniformly heat the load. The Teflon cylinder has seals and can heat loads under pressure. The load cylinder is enclosed in a coaxial housing and the geometry of the load cylinder and enclosure are designed to provide a nominal impedance of 50 Ω to match the RF generator impedance. The applicator has a thermocouple embedded in an electrode and a software control system is implemented in LabView to adjust the generator power for a target ramp rate or to maintain a steady state temperature. Extensive electromagnetic simulations were done to verify and optimize the applicator design. Analytic, simulation and experimental results are compared and very good agreement is obtained. ii Table of Contents Abstract .......................................................................................................................... ii Table of Contents ......................................................................................................... iii List of Tables ................................................................................................................. vi List of Figures .............................................................................................................. vii List of Abbreviations ................................................................................................... xii Acknowledgements ..................................................................................................... xiii Dedication ................................................................................................................... xiv Chapter 1: Introduction ............................................................................................... 1 1.1 Literature Review.............................................................................................. 2 1.1.1 Heating Pretreatment Methods for Waste Activated Sludge .................... 2 1.1.2 Other Applications of RF Heating ............................................................ 3 1.2 Research Objectives .......................................................................................... 4 1.3 Overview of Chapters ....................................................................................... 5 Chapter 2: Selecting a Frequency for the RF Heating System ................................ 7 2.1 Conventional Heating versus Electromagnetic Heating ................................... 8 2.2 Principles of Electromagnetic Heating ............................................................. 9 2.2.1 Conductivity ............................................................................................ 10 2.2.2 Ohmic Heating ........................................................................................ 13 2.2.3 Dielectric Heating ................................................................................... 14 2.3 Electrical Properties of Materials.................................................................... 18 2.3.1 Relaxation, Dispersion and the Debye Model ........................................ 18 2.3.2 Electrical Models for Cells and Tissues.................................................. 21 iii 2.3.3 Dielectric Properties of Waste Activated Sludge .................................... 24 2.4 Selecting a Frequency for Heating Waste Activated Sludge .......................... 26 Chapter 3: Design of the RF Heating System .......................................................... 30 3.1 Electrical Properties of the Load..................................................................... 30 3.1.1 Waste Activated Sludge .......................................................................... 31 3.1.2 Equivalent Salt Water Loads .................................................................. 32 3.2 Heating Applicator Physical Design ............................................................... 36 3.3 Electrical Models of the RF Heating System .................................................. 43 3.3.1 Power Transfer ........................................................................................ 44 3.3.2 Equivalent Model for the Load ............................................................... 47 3.3.3 Electrical Model for the Enclosure ......................................................... 51 3.4 Analytic and Simulated Results for Power Transfer Efficiency ..................... 55 Chapter 4: Experimental Results .............................................................................. 60 4.1 Design of the Experimental Test Bed ............................................................. 60 4.1.1 RF Generator ........................................................................................... 62 4.1.2 Coaxial Cable Interconnect ..................................................................... 64 4.1.3 Heating Applicator .................................................................................. 67 4.1.4 Temperature Measurement System ......................................................... 78 4.1.5 Control Software ..................................................................................... 80 4.2 Thermal Profiles of the RF Heating System ................................................... 83 4.2.1 Thermal Ramp Rate for a Salt Water Load ............................................ 83 4.2.2 Thermal Ramp Rate for Waste Activated Sludge ................................... 84 4.2.3 Thermal Settling Time for Heating at Constant Temperature ................ 86 iv 4.2.4 Thermal Gradient between the Electrodes .............................................. 88 4.3 Impedance and Power Transfer Measurements .............................................. 96 4.3.1 Salt Water Load ...................................................................................... 96 4.3.2 Waste Activated Sludge ........................................................................ 100 4.4 Comparison of Analytic, Simulated and Measured Results ......................... 102 Chapter 5: Conclusion ............................................................................................. 105 5.1 Contributions................................................................................................. 105 5.2 Future Work .................................................................................................. 107 Bibliography .............................................................................................................. 109 v List of Tables Table 3.1 Electrical properties of waste activated sludge at a frequency of 13.56 MHz and at a temperature of 25°C. ............................................................. 31 Table 3.2 Comparison of the electrical properties of salt water and waste activated sludge at a temperature of 25°C. ............................................................ 34 Table 3.3 Equivalent circuit and geometrical parameters for WAS and salt water loads at 25°C. ........................................................................................ 49 Table 3.4 Capacitance and inductance of the connecting coaxial cable. ............................... 52 Table 3.5 Intrinsic capacitance and inductance for the heating apparatus. ............................ 54 Table 4.1 Effect of EMI on temperature measurements. ....................................................... 79 Table 4.2 Ramp rate of the RF heating device with 0.03315 N salt water load. ................... 84 Table 4.3 Comparison of ramp rates for 0.03315 N salt water and 4.5% WAS. ................... 86 Table 4.4 Summary of maximum and minimum temperatures across a 0.03315 N salt water load. ..................................................................................... 94 vi List of Figures Figure 2.1 Conventional and electromagnetic heating temperature profiles across the load. 9 Figure 2.2 Conduction current flow through a metallic conductor. ....................................... 11 Figure 2.3 Ionic current flow through a salt water electrolyte. .............................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    124 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us