Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-2003 Protonation of germanium sulfide yb hydrogen sulfide Jacob Thomas Sutherland Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Sutherland, Jacob Thomas, "Protonation of germanium sulfide yb hydrogen sulfide" (2003). Retrospective Theses and Dissertations. 20054. https://lib.dr.iastate.edu/rtd/20054 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Protonation of germanium sulfide by hydrogen sulfide by Jacob Thomas Sutherland A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Materials Science and Engineering Program of Study Committee: Steve W. Martin, Major Professor David Cann Kurt Hebert Iowa State University Ames, Iowa 2003 11 Graduate College Iowa State University This is to certify that the master's thesis of Jacob Thomas Sutherland has met the thesis requirements of Iowa State University Signatures have been redacted for privacy iii Table of Contents 1. Introduction ........................................................................................................................ 1 1.1. The Proton Exchange Membrane Fuel Cell ................................................................. 2 1.2. Electrochemistry of PEM Fuel Cells ........................................................................... 3 1.3. Electrochemical Behavior of H2-02 Fuel Cells ............................................................ 5 1.4. Proton Conducting Solids ............................................................................................ 8 1.5. Compositions and Thermochemistry of Chalcogenide Compounds ........................... 12 2. Purpose ............................................................................................................................. 17 2.1. Thesis Organization .................................................................................................. 17 3. Experimental Methods ...................................................................................................... 20 3.1. Condensate Reaction between H2S(g) and GeS2.......................................................... 20 3.2. Pressurized Reactions between H2S(g) and GeS2 in a Thermal Gradient ..................... 21 3.3. Isothermal Pressurized Reactions between H2S(g) and GeS2....................................... 22 3.4. GeS2 + H2S(g) -7 H2xGeS(x+2) Reaction Products ........................................................ 25 3.5. References ................................................................................................................ 27 4. H2S Synthesis Route for High Purity L.T. 3-D a.-GeS2...................................................... 30 4 .1 Abstract .................................................................................................................... 30 4.2 Introduction and Background .................................................................................... 31 4.3 Sample Preparation ................................................................................................... 32 4.4 Results and Discussion .............................................................................................. 34 4.5 Conclusions .............................................................................................................. 36 4.6 Acknowledgements ................................................................................................... 36 4.7 Figure captions ......................................................................................................... 37 4.8 References ................................................................................................................ 44 5. Exploration of the H2S-GeS2 system ................................................................................. 46 5 .1 Abstract .................................................................................................................... 46 5.2 Introduction .............................................................................................................. 47 5.3 Experimental Section ................................................................................................ 48 5.3.1 Preparation of the Base Material.. ........................................................................ 48 5.3.2 High Temperature Reactions ............................................................................... 50 5.3.3 Moderate Temperature Reactions ........................................................................ 51 5.4 Results and Discussion ............................................................................................. 52 5.4.1 Temperature Dependent Reaction Route .............................................................. 52 5.4.2 High Temperature Reaction Products ................................................................... 53 5.4.3 Moderate Temperature Reaction Products ........................................................... 54 5.4.4 Quantitative IR Spectroscopy .............................................................................. 55 5.5 Summary and Conclusion ........................................................................................ 57 5.6 Acknowledgements .................................................................................................. 58 5.7 Figures ..................................................................................................................... 59 5.8 References ............................................................................................................... 74 6. Formation Reactions for Thiogermanic acid from Ge02 and GeS2 Precursors ................... 76 6.1 Abstract .................................................................................................................... 76 6.2 Introduction .............................................................................................................. 77 6.3 Experimental. ............................................................................................................ 78 iv 6.4 Results and Discussion .............................................................................................. 79 6.5 Conclusions .............................................................................................................. 81 6.6 Acknowledgements ................................................................................................... 81 6. 7 Figures ...................................................................................................................... 82 6.7 References ................................................................................................................ 87 7. Conclusions ...................................................................................................................... 88 7.1 Future Work ............................................................................................................. 90 8. Acknowledgements ........................................................................................................... 91 9. Appendix 1: Equation of State of Hydrogen Sulfide .......................................................... 92 10. Appendix 2: Stoichiometry Calculations for GeS 2 +H2Scg) Reactions ................................ 95 1 1. INTRODUCTION The use of fuel cells as portable energy sources as possible replacements for the internal combustion engine and as substitutes for battery technologies are known to have vast potential [ 1]. While there exist several different types of fuel cells, proton exchange membrane (PEM) fuel cells are of particular interest for use in personal and mass transit vehicles. Other types of fuel cells such as molten carbonate and solid oxide fuel cells are ill- suited for the environmental conditions associated with a motor vehicle. Specifically, the high operating temperatures (T > 500°C) of the latter fuel cell types create a number of problems that are solved by the lowered operating temperatures of the PEM fuel cell (T < 200°C). Polymer-based membranes are some of the best candidates for the PEM fuel cell for several reasons [1]. Polymer membranes offer a lower operation temperature resulting in a quicker and less-wasteful start-up of the fuel cell stack. Industry wide, different polymer electrolyte membranes have some commonalities. Generally, they are made from sulphonated fluoropolymers most typically fluroethylene [2]. Nation® (DuPont) is the best known of these fluoropolymers. Nation is chemically resistant, mechanically strong and has excellent proton conductivity. However, polymer electrolyte based fuel cells, like those that use Nation, have some substantial problems. Problems with Nation and various adaptations of it include fuel cross-over and cell hydration. Fuel cross-over results when a fuel, e.g. methanol in direct methanol fuel cells, is directly absorbed by the polymer and transferred directly from the anode to the cathode resulting
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages101 Page
-
File Size-