Process Evaluation and Characterization of Tungsten

Process Evaluation and Characterization of Tungsten

PROCESS EVALUATION AND CHARACTERI ZATION OF TUNGSTEN NITRIDE AS A DIFFUSION BARRIER FOR COPPER INTERCONNECT TECHNOLOGY Bradley Mitsuharu Ekstrom, B. A., M. S. Dissertation Prepared for the Degree of DOCTOR OF PHILOSOPHY UNIVERSITY OF NORTH TEXAS August 2005 APPROVED: Jeffry A. Kelber, Major Professor Oliver Chyan, Committee Member Paul R. Jones, Committee Member Michael Richmond, Committee Member Ajay Jain, Committee Member Ruthanne D. Thomas, Chair of the Department of Chemistry Sandra L. Terrell, Dean of the Robert B. Toulouse School of Graduate Studies Ekstrom, Bradley Mitsuharu, Process Evaluation and Characterization of Tungsten Nitride as a Diffusion Barrier for Copper Interconnect Technology. Doctor of Philosophy (Analytical Chemistry), August 2005, 84 pp., 5 tables, 27 illustrations, 99 titles. The integration of copper (Cu) and dielectric materials has been outlined in the International Technology Roadmap for Semiconductors (ITRS) as a critical goal for future microelectronic devices. A necessity toward achieving this goal is the development of diffusion barriers that resolve the Cu and dielectric incompatibility. The focus of this research examines the potential use of tungsten nitride as a diffusion barrier by characterizing the interfacial properties with Cu and evaluating its process capability for industrial use. Tungsten nitride (β−W2N) development has been carried out using a plasma enhanced chemical vapor deposition (PECVD) technique that utilizes tungsten hexafluoride (WF6), nitrogen (N2), hydrogen (H2), and argon (Ar). Two design of experiments (DOE) were performed to optimize the process with respect to film stoichiometry, resistivity and uniformity across a 200 mm diameter Si wafer. Auger depth profiling showed a 2:1 W:N ratio. X-ray diffraction (XRD) showed a broad peak centered on the β−W2N phase. Film resistivity was 270 μohm-cm and film uniformity < 3 %. The step coverage (film thickness variance) across a structured etched dielectric (SiO2, 0.35 μm, 3:1 aspect ratio) was > 44 %. Secondary ion mass spectroscopy (SIMS) measurements showed good barrier performance for W2N between Cu and o SiO2 with no intermixing of the Cu and silicon when annealed to 390 C for 3 hours. Cu nucleation behavior and thermal stability on clean and nitrided tungsten foil (WxN = δ−WN and β−W2N phases) have been characterized by Auger electron spectroscopy (AES) and thermal desorption spectroscopy (TDS) under controlled ultra high vacuum (UHV) conditions. At room temperature, the Auger intensity ratio vs. time plots demonstrates layer by layer Cu growth for the clean tungsten (W) surface and three-dimensional nucleation for the nitride overlayer. Auger intensity ratio vs. temperature measurements for the Cu/W system indicates a stable interface up to 1000 K. For the Cu /WxN/W system, initial Cu diffusion into the nitride overlayer is observed at 550 K. ACKNOWLEDGMENTS Financial support for this research was provided by the Semiconductor Research Corporation (SRC) through the Center for Advanced Interconnect Science and Technology (CAIST) and is gratefully acknowledged. Secondary ion mass spectroscopy, X-Ray diffraction (XRD), scanning electron microscopy (SEM) and other thin film analysis techniques were provided by Advanced Products Research and Development Laboratories (APRDL), Motorola, Semiconductor Products Sector, Austin, Texas and is gratefully acknowledged. ii TABLE OF CONTENTS Page LIST OF TABLES ..........................................................................................................v LIST OF ILLUSTRATIONS ..........................................................................................vi Chapter 1. INTRODUCTION ...................................................................................................1 1.1. Why the Move to Cu? .......................................................................................3 1.2. Cu Integration Roadblocks ................................................................................7 1.3. Requirements for Cu Adhesion Promoters and Diffusion Barriers ...................10 1.3.1. Strong Adhesion.......................................................................................11 1.3.2. Minimization of Chemical Interdiffusion and Limit Chemical Interactions ..........................................................................................................................11 1.3.3. Low Resistivity and Low Thickness .........................................................14 1.3.4. Good Feature Conformality through Chemical Vapor Deposition (CVD) Processing..........................................................................................................15 1.3.5. High Uniformity.......................................................................................17 1.3.6. Low Stress................................................................................................17 1.4. Summary.........................................................................................................18 1.5. Chapter References .........................................................................................20 2. ANALYTICAL METHODS AND CHEMICIAL VAPOR DEPOSITION FOR THE MICORELECTRONICS INDUSTRY.......................................................................23 2.1. Introduction.....................................................................................................23 2.2. X-Ray Diffraction (XRD)................................................................................24 2.3. Scanning Electron Microscopy (SEM).............................................................24 2.4. Transmission Electron Microscopy (TEM)......................................................25 2.5. Auger Electron Spectroscopy (AES) and Depth Profiling ................................26 2.6. Secondary Ion Mass Spectroscopy (SIMS)......................................................29 2.7. Atomic Force Microscopy (AFM) ...................................................................32 2.8. Wafer Curvature: Stress Measurement............................................................33 2.9. Four Point Probe Sheet Resistance Measurement.............................................34 2.10. Thermal Desorption Spectroscopy (TDS) ......................................................36 2.11. Chemical Vapor Deposition...........................................................................37 iii 2.12. Chapter References .......................................................................................44 3. PROCESS DEVELOPMENT AND CHARACTERIZATION OF PLASMA ENCHANCED CHEMICAL VAPOR DEPOSITION (PECVD) OF W2N AS A DIFFUSION BARRIER FOR COPPER INTERCONNECTS....................................47 3.1. Introduction.....................................................................................................47 3.2. Experimental...................................................................................................48 3.2.1. PECVD W2N Process Development .........................................................48 3.2.2. Film characterization of PECVD W2N films.............................................49 3.3. Results ............................................................................................................53 3.4. Summary and Conclusions ..............................................................................58 3.5. Chapter References .........................................................................................60 4. CU WETTING AND INTERFACIAL STABILITY ON CLEAN AND NITRIDED TUNGSTEN SURFACES .........................................................................................61 4.1. Introduction.....................................................................................................61 4.2. Experimental...................................................................................................62 4.3. Results and Interpretation................................................................................65 4.3.1. Cu on Clean vs. Nitrided W Surfaces........................................................65 4.3.2. Cu Thermal Stability on Clean vs. Nitrided W Surfaces............................67 4.4. Discussion.......................................................................................................72 4.4.1. Cu Growth Behavior for Clean vs. Nitrided Tungsten...............................72 4.4.2. Thermal Induced Cu Diffusion and Instability of the Cu/Nitride/W Interface ..........................................................................................................................74 4.5. Summary and Conclusions ..............................................................................75 4.6. Chapter References .........................................................................................76 REFERENCE LIST.......................................................................................................79 iv LIST OF TABLES Page Table 1.1. Electromigration Parameters of Bulk Materials ...............................................4 Table 1.2. Heats of formation (kcal per nonmetal atom) at 298 oC....................................9 Table 1.3. Reasons for diffusion barrier/adhesion layer requirements.............................19 Table 2.1. Properties characterized by analytical technique............................................23 Table 2.2. SIMS Detection limits for various dopants in Si. ...........................................31

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    94 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us