Rocket Performance

Rocket Performance

Rocket Performance • Te rocket equation • Mass ratio and performance • Structural and payload mass fractions • Regression analysis • Multistaging • Optimal ΔV distribution between stages • Trade-off ratios • Parallel staging • Modular staging © 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu U N I V E R S I T Y O F Rocket Performance MARYLAND 1 ENAE 791 - Launch and Entry Vehicle Design Derivation of the Rocket Equation V • Momentum at time t: e m-Δm v m M = mv Δm v+Δv v-V • Momentum at time t+Δt: e M =(m − ∆m)(V +∆v)+∆m(v − Ve) • Some algebraic manipulation gives: ! m∆v = −∆mVe • Take to limits and integrate: m V final dm final dv = − ! m ! Ve minitial Vinitial U N I V E R S I T Y O F Rocket Performance MARYLAND 2 ENAE 791 - Launch and Entry Vehicle Design The Rocket Equation mfinal − ∆V • Alternate forms r ≡ = e Ve m initial mfinal ∆v = −Ve ln = −Ve ln r ! !minitial " • Basic definitions/concepts m m – Mass ratio r ≡ final or ℜ≡ initial ! minitial mfinal – Nondimensional velocity change “Velocity ratio” ∆V ⌫ ⌘ Ve U N I V E R S I T Y O F Rocket Performance MARYLAND 3 ENAE 791 - Launch and Entry Vehicle Design Rocket Equation (First Look) 1 Typical Range for Launch to ) Low Earth Orbit initial 0.1 /M nal fi 0.01 Mass Ratio, (M Mass 0.001 0 2 4 6 8 Velocity Ratio, (ΔV/Ve) U N I V E R S I T Y O F Rocket Performance MARYLAND 4 ENAE 791 - Launch and Entry Vehicle Design Sources and Categories of Vehicle Mass Payload Propellants Structure Propulsion Avionics Power Mechanisms Thermal Etc. U N I V E R S I T Y O F Rocket Performance MARYLAND 5 ENAE 791 - Launch and Entry Vehicle Design Sources and Categories of Vehicle Mass Payload Propellants Inert Mass Structure Propulsion Avionics Power Mechanisms Thermal Etc. U N I V E R S I T Y O F Rocket Performance MARYLAND 6 ENAE 791 - Launch and Entry Vehicle Design Cost and Weight Distribution - Atlas V U N I V E R S I T Y O F Rocket Performance MARYLAND 7 ENAE 791 - Launch and Entry Vehicle Design Cost and Weight - Atlas V First Stage propellant mass Propellant mass fraction PMF = total stage mass U N I V E R S I T Y O F Rocket Performance MARYLAND 8 ENAE 791 - Launch and Entry Vehicle Design Cost and Weight - Atlas V Second Stage U N I V E R S I T Y O F Rocket Performance MARYLAND 9 ENAE 791 - Launch and Entry Vehicle Design Basic Vehicle Parameters • Basic mass summary mo =initial mass mo = mpl + mpr + min mpl =payload mass • Inert mass fraction mpr =propellant mass ! m m min =inert mass δ ≡ in = in ! mo mpl + mpr + min • Payload fraction ! m m λ ≡ pl = pl ! mo mpl + mpr + min • Parametric mass ratio r = λ + δ U N I V E R S I T Y O F Rocket Performance MARYLAND 10 ENAE 791 - Launch and Entry Vehicle Design Rocket Equation (including Inert Mass) 1 ) Typical Range for Launch to Low initial Earth Orbit Inert Mass /M Fraction δ 0.1 0 0.05 payload 0.1 0.15 0.01 0.2 0.001 Payload Fraction, (M Fraction, Payload 0 2 4 6 8 Velocity Ratio, (ΔV/Ve) U N I V E R S I T Y O F Rocket Performance MARYLAND 11 ENAE 791 - Launch and Entry Vehicle Design Limiting Performance Based on Inert Mass 5 4.5 Typical Feasible Design Range for V/Ve) 4 Inert Mass Fraction Δ 3.5 3 2.5 2 1.5 1 0.5 0 Asymptotic Velocity Ratio, ( Velocity Asymptotic 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 Inert Mass Fraction, (Minert/Minitial) U N I V E R S I T Y O F Rocket Performance MARYLAND 12 ENAE 791 - Launch and Entry Vehicle Design Regression Analysis of Existing Vehicles Veh/Stage prop mass gross mass Type Propellants Isp vac isp sl sigma eps delta (lbs) (lbs) (sec) (sec) Delta 6925 Stage 2 13,367 15,394 StorableN2O4-A50 319.4 0.152 0.132 0.070 Delta 7925 Stage 2 13,367 15,394 StorableN2O4-A50 319.4 0.152 0.132 0.065 Titan II Stage 2 59,000 65,000 StorableN2O4-A50 316.0 0.102 0.092 0.087 Titan III Stage 2 77,200 83,600 StorableN2O4-A50 316.0 0.083 0.077 0.055 Titan IV Stage 2 77,200 87,000 StorableN2O4-A50 316.0 0.127 0.113 0.078 Proton Stage 3 110,000 123,000 StorableN2O4-A50 315.0 0.118 0.106 0.078 Titan II Stage 1 260,000 269,000 StorableN2O4-A50 296.0 0.035 0.033 0.027 Titan III Stage 1 294,000 310,000 StorableN2O4-A50 302.0 0.054 0.052 0.038 Titan IV Stage 1 340,000 359,000 StorableN2O4-A50 302.0 0.056 0.053 0.039 Proton Stage 2 330,000 365,000 StorableN2O4-A50 316.0 0.106 0.096 0.066 Proton Stage 1 904,000 1,004,000 StorableN2O4-A50 316.0 285.0 0.111 0.100 0.065 average 312.2 285.0 0.100 0.089 0.061 standard deviation 8.1 0.039 0.033 0.019 U N I V E R S I T Y O F Rocket Performance MARYLAND 13 ENAE 791 - Launch and Entry Vehicle Design Inert Mass Fraction Data for Existing LVs 0.18 0.16 0.14 0.12 LOX/LH2 0.10 LOX/RP-1 0.08 Solid 0.06 Storable Inert Mass Fraction Mass Inert 0.04 0.02 0.00 0 1 10 100 1,000 10,000 Gross Mass (MT) U N I V E R S I T Y O F Rocket Performance MARYLAND 14 ENAE 791 - Launch and Entry Vehicle Design Regression Analysis • Given a set of N data points (xi,yi) • Linear curve fit: y=Ax+B – find A and B to minimize sum squared error N ! 2 error = !(Axi + B − yi) ! i=1 – Analytical solutions exist, or use Solver in Excel A • Power law fit: y=BxN 2 ! error = ! [A log(xi)+B − log(yi)] i=1 • Polynomial, exponential, many other fits possible U N I V E R S I T Y O F Rocket Performance MARYLAND 15 ENAE 791 - Launch and Entry Vehicle Design Solution of Least-Squares Linear Regression N ∂(error) =2!(Axi + B − yi)xi =0 ∂A i=1 N ∂(error) =2 (Axi + B − yi)=0 ∂B ! N N N i=1 2 A xi + B xi − xiyi =0 ! ! ! N N i=1 i=1 i=1 A ! xi + NB − ! yi =0 i=1 i=1 2 N ! xiyi − ! xi ! yi ! yi ! xi − ! xi ! xiyi B A = 2 2 = 2 2 N ! xi − (! xi) N ! xi − (! xi) U N I V E R S I T Y O F Rocket Performance MARYLAND 16 ENAE 791 - Launch and Entry Vehicle Design Regression Analysis - Storables 0.10 0.08 0.06 0.04 0.02 R2 = 0.0541 0.00 Inert Mass Fraction Mass Inert 1 10 100 1,000 Gross Mass (MT) U N I V E R S I T Y O F Rocket Performance MARYLAND 17 ENAE 791 - Launch and Entry Vehicle Design Regression Values for Design Parameters Vacuum Ve Inert Mass Max ΔV (m/sec) Fraction (m/sec) LOX/LH2 4273 0.075 11,070 LOX/RP-1 3136 0.063 8664 Storables 3058 0.061 8575 Solids 2773 0.087 6783 U N I V E R S I T Y O F Rocket Performance MARYLAND 18 ENAE 791 - Launch and Entry Vehicle Design Economy of Scale for Stage Size 0.20# M 0.18# ✏ = inert 0.16# Minert + Mprop 0.14# 0.12# 0.10# 0.08# 0.06# 0.04# Stage#Inert#Mass#Frac6on#ε# 0.02# PMF =1 ✏ 0.00# − 1# 10# 100# 1,000# 10,000# Stage#Gross#Mass,#MT# Storable#MER# LOX/RPD1# Storables# LOX/LH2# Cryo#MER# U N I V E R S I T Y O F Rocket Performance MARYLAND 19 ENAE 791 - Launch and Entry Vehicle Design Stage Inert Mass Fraction Estimation 0.183 ✏ =0.987 (M kg )− LOX/LH2 stageh i 0.275 ✏ =1.6062 (M kg )− storables stageh i U N I V E R S I T Y O F Rocket Performance MARYLAND 20 ENAE 791 - Launch and Entry Vehicle Design The Rocket Equation for Multiple Stages • Assume two stages ! mfinal1 ! ∆V1 = −Ve1 ln = −Ve1 ln(r1) !minitial1 " ! m ! V −V final2 −V r ∆ 2 = e2 ln m = e2 ln( 2) ! ! initial2 " • Assume Ve1=Ve2=Ve ∆V1 +∆V2 = −Ve ln(r1) − Ve ln(r2)=−Ve ln(r1r2) U N I V E R S I T Y O F Rocket Performance MARYLAND 21 ENAE 791 - Launch and Entry Vehicle Design Continued Look at Multistaging • Tere’s a historical tendency to define r0=r1r2 ! ∆V + ∆V = V ln (r r ) = V ln (r ) 1 2 − e 1 2 − e 0 ! • But it’s important to remember that it’s really ! m m ∆V + ∆V = V ln (r r ) = V ln final1 final2 ! 1 2 − e 1 2 − e m m initial1 initial2 ⇥ • And that r0 has no physical significance, since mfinal2 mfinal1 = minitial2 r0 = ⇥ ⇒ ⇥ minitial1 U N I V E R S I T Y O F Rocket Performance MARYLAND 22 ENAE 791 - Launch and Entry Vehicle Design Multistage Inert Mass Fraction • Total inert mass fraction ! m + m + m m m m δ = in,1 in,2 in,3 = in,1 + in,2 + in,3 0 m m m m ! 0 0 0 0 min,1 min,2 m0,2 min,3 m0,3 m0,2 ! δ0 = + + m0 m0,2 m0 m0,3 m0,2 m0 • Convert to dimensionless parameters ! δ0 = δ1 + δ2λ1 + δ3λ2λ1 • General form of the equation n stages j−1 δ δ λ 0 = ! [ j " ℓ] j=1 ℓ=1 U N I V E R S I T Y O F Rocket Performance MARYLAND 23 ENAE 791 - Launch and Entry Vehicle Design Multistage Payload Fraction • Total payload fraction (3 stage example) ! mpl mpl m0,3 m0,2 λ0 = = ! m0 m0,3 m0,2 m0 • Convert to dimensionless parameters ! λ0 = λ3λ2λ1 • Generic form of the equation n stages λ λ 0 = ! j j=1 U N I V E R S I T Y O F Rocket Performance MARYLAND 24 ENAE 791 - Launch and Entry Vehicle Design Effect of δ and ΔV/Ve on Payload 0.9000.7000.4000.2500.0900.0600.020 0.018 ∆V 0.3500.8000.080 0.0500.600 = 12340.0255 0.7000.0700.2000.016 0.300 Ve 0.0140.500 0.6000.0600.040 0.250 0.1500.012 1 stage 0.400 0.5000.050 2 stages 0.2000.0300.010 3 stages 0.3000.4000.040 0.1000.008 0.150 4 stages 0.3000.0300.020 0.2000.006 0.100 Total Payload Fraction Payload Total 0.0500.0040.2000.020 0.010 0.0500.100 0.0020.1000.010 0.000 0 0.2 0.4 0.60.6 0.80.8 11 Inert Mass Fraction U N I V E R S I T Y O F Rocket Performance MARYLAND 25 ENAE 791 - Launch and Entry Vehicle Design Effect of Staging Inert Mass Fraction δ=0.15 0.25 Single Stage Three Stage Two Stage Four Stage 0.20 0.15 1 stage 2 stage 3 stage 0.10 4 stage Payload Fraction 0.05 0.00 0 1 2 3 4 5 Velocity Ratio (ΔV/Ve) U N I V E R S I T Y O F Rocket Performance MARYLAND 26 ENAE 791 - Launch and Entry Vehicle Design Trade Space for Number of Stages 4 3.5 Solids 3 LOX/RP-1 Four Stage Storables 2.5 Three Stage 2 LOX/LH2 1.5 Two Stage Velocity Ratio DV/Ve Ratio Velocity Velocity Ratio DV/Ve Ratio Velocity 1 Single Stage 0.5 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Inert Mass Fraction U N I V E R S I T Y O F Rocket Performance MARYLAND 27 ENAE 791 - Launch and Entry Vehicle Design Effect of ΔV Distribution

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    56 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us