SEP 27 1994 Science

SEP 27 1994 Science

AN ELECTROCHEMICAL INVESTIGATION OF THE PERFORMANCE OF CANDIDATE NONCONSUMABLE ANODES FOR HALL CELLS by David William Pratt B. S., Metallurgical Engineering A. B., Spanish Literature and Linguistics University of Illinois at Urbana-Champaign, 1992 Submitted to the Department of Materials Science and Engineering in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in Materials Science & Engineering at the Massachusetts Institute of Technology September 1994 © David William Pratt 1994 All rights reserved The author hereby grants to MIT permission to reproduce and to distribute publicly copies of this thesis/97 document in whole or in part. Signature of Author Depart ent of Materials Science and Engineering .' -" August 5, 1994 Certified by Professor Donald R. Sadoway Professor of Materials Chemistry Thesis Supervisor Accepted by Carl XI Thomscnen TT Professor of Electronic Materials Chair, Department Commission of Graduate Students MASSACHUSETTS INSTITUTE OF TFC4t',t On(.Y 1 ,SEP 27 1994 Science AN ELECTROCHEMICAL INVESTIGATION OF THE PERFORMANCE OF CANDIDATE NONCONSUMABLE ANODES FOR HALL CELLS by DAVID WILLIAM PRATT Submitted to the Department of Materials Science and Engineering on August 5, 1994 in partial fulfillment of the requirements for the Degree of Master of Science in Materials Science and Engineering ABSTRACT An experimental study was carried out to observe the performance of candidate nonconsumable anodes (a copper-aluminum alloy and an iron- chromium-aluminum alloy) and compare this with the usual industrial anode material, carbon, and the ideal nonconsumable anode, platinum. Linear sweep voltammetry (LSV) and sampled current voltammetry (SCV) were used to determine parameters such as io, a and the i-Ti relationship to ascertain the degree of the kinetic facility of the reaction. An aluminum- cryolite reference electrode was also used. The results from the LSV yielded results of varying quality. Tests employing carbon and platinum anodes yielded values far in excess of established exchange currents. Tests employing the candidate anode materials yielded exchange current density values of 0.017 and 0.019 Aecm- 2 for the aluminum bronze (Cu-10%Al) and Hoskins 875 (Fe-22.5%Cr-5.5%Al) alloys, respectively. Results of the SCV experiment were only done on platinum and carbon anodes; the apparatus failed irreparably before SCV experiment could be performed on the aluminum bronze or the Hoskins 875. Carbon: io = 0.0183 A*cm -2 (z=1 s) Ti = 3.6875 + 2.4563 log i a = 0.950 Platinum: io = 0.0541 A*cm-2 (t=0.1 s) io = 0.0879 A*cm-2 (t=1 s) T = 0.5186 + 0.4999 log i Ti = 0.53169 + 0.59281 log i a = 0.756 a = 0.891 Thesis supervisor: Dr. Donald R. Sadoway Title: Professor of Materials Chemistry TABLE OF CONTENTS LIST OF ILLUSTRATIONS AND FIGURES ....................................... ........... LIST O F TA BLES.................................................. .................................................. 7 ACKNOWLEDGMENTS................................... ................................................. 8 CHAPTER 1 INTRODUCTION............................................ ......................... 9 CHAPTER 2 BACKGROUND ............................................................................ 11 2.1 Chemistry of the Hall Cell ........................................ ...... 11 2.2 Problems associated with aluminum electrolysis .......................... 12 2.3 Previous Research in Inert Anodes ..................................... .... 13 2.3.1 Ceram ics.............................................. ............. ............ 14 2.3.2 Cerm ets ........................................................ ......... ......... 15 2.3.3 M etals ........................................................ ......... .......... 15 2.4 Recent Research ..................................... ....... ................. 16 CHAPTER 3 THESIS PROPOSAL ................................................. .. ...... 20 CHAPTER 4 EXPERIMENTAL APPARATUS.............................. ..... 21 4.1 Apparatus ......................................................................... .................... 21 4.2 C hemicals ......................................................................... .................... 23 4.3 Electrical Components............................................ .................. 24 CHAPTER 5 THEORETICAL CONSIDERATIONS ...................................... 26 5.1 Linear Sweep Voltammetry ......................................... ..... 26 5.1.1 Introduction ............................................. ....... 26 5.1.2 Reversible system ........................................... ..... 26 5.1.3 Irreversible System....................... ...... 28 5.1.4 Reversal techniques ........................................ ...... 29 5.2 Sampled current voltammetry .................................... 30 5.2.1 Introduction ..................................... ..... ............... 30 5.2.2 Butler-Volmer Equation ....................................... ... 31 5.2.3 Small overpotential ........................................ ...... 32 5.2.4 Large overpotential ......................................... ..... 33 CHAPTER 6 RESULTS ................................................................................. 34 6.1 Carbon ................. .................................................................................. 34 6.2 Platinum ........................................................................... .................... 41 6.3 A lum inum Bronze .................................................................................. 49 6.4 Iron-chromium-aluminum alloy................... ..... 50 6.5 Discussion.. .... ........................................... .......................... .............. 51 6.6 Error analysis ...................................................................... ................. 52 CHAPTER 7 CONCLUSION ...................................................... .. ........ 55 7.1 Summ ary ...................................................... ........................................ 55 7.2 Recommendations ..................................................... .. ....... 56 A PPEN D IX I ................ .................................................................................................. 57 SCHEMATIC OF REFERENCE ELECTRODE .......................................... 57 SCHEMATIC OF WORKING ELECTRODE ADAPTER .......................58 SCHEMATIC OF COUNTER ELECTRODE ...................................... 59 APPENDIX II VARIABLES AND CONSTANTS............................................60 APPENDIX III RELEVANT PHASE DIAGRAMS................................ ....... 61 EN D N O TES................................... ................................................................................ 63 LIST OF ILLUSTRATIONS AND FIGURES Figure 2.4.1. The Ellingham diagram for metallurgically important m etals and their oxides.................................................. ...................................... 19 Figure 4.1.1 A graphic representation of the cell used in this study ................ 22 Figure 4.3.1. Schematic of the electrical members of the test cell .................. 25 Figure 6.1.1. Graph of sampled current at z = 1 s as a function of the applied stepped potential. .............................................................................. 39 Figure 6.1.2. Tafel plot of data from Figure 6.1.1 ...................................... 39 Figure 6.1.3. Allen-Hickling analysis of carbon SCV measurements..........40 Figure 6.1.4. Allen-Hickling plot of low overpotential region .........................40 Figure 6.2.1. Overpotential-current characteristic taken from SCV experiment on platinum at z=0.1 s. T=1233 K................................... ... 43 Figure 6.2.2. Tafel plot of SCV experiment on carbon working electrode ................................................................................................... ............... 43 Figure 6.2.3. Allen-Hickling plot of SCV experiment on platinum, = 0.1 s .............................................................................................................................. 44 Figure 6.2.4. Low overvoltage regime of Figure 6.2.3........................44 Figure 6.2.5. Overpotential-current characteristic taken from SCV experiment on platinum at z=1 s. T=1233 K.........................................45 Figure 6.2.6. Tafel plot of SCV experiment on platinum working electrode. z=1 s ......................... ........................................ ..................................... 45 Figure 6.2.7. Allen-Hickling plot of SCV experiment on platinum. '=ls.......46 Figure 6.2.8. Low overvoltage regime of Figure 6.2.5..........................................46 Figure 6.2.9. Close-up of Figure 6.2.2. T=1233 K.....................................47 Figure 6.2.10. Close-up of Figure 6.2.6. T=1233 K..........................48 Figure 1.1. Al/A13+ reference electrode used in this study............................57 Figure 1.2. Working electrode adapter used in this study ............................... 58 Figure 1.3. Illustration of liquid aluminum pool cathode and tungsten rod current collector .......................................................................... ................... 59 Figure III.1. Copper-aluminum phase diagram ..................... 61 Figure 111.2. Aluminum-chromium-iron phase diagram............................. 62 LIST OF TABLES Table 6.1.1. Exchange currents densities for various

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    67 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us