REPORT FOR THE ADMINISTRATIVE CONFERENCE OF THE UNITED STATES A FRAMEWORK FOR GOVERNMENTAL USE OF MACHINE LEARNING Cary Coglianese University of Pennsylvania Law School This report was prepared for the consideration of the Administrative Conference of the United States. It does not necessarily reflect the views of the Conference (including its Council, committees, or members). Recommended Citation Cary Coglianese, A Framework for Governmental Use of Machine Learning (Dec. 8, 2020) (report to the Admin. Conf. of the U.S.), https://www.acus.gov/sites/default/files/documents/ Coglianese%20ACUS%20Final%20Report.pdf A Framework for Governmental Use of Machine Learning Cary Coglianese* TABLE OF CONTENTS INTRODUCTION ........................................................................................................ 3 I. LIMITATIONS OF HUMAN DECISION-MAKING ....................................................... 8 A. Physical limitations ...................................................................................... 10 1. Memory Capacity. ..................................................................................... 10 2. Fatigue. ..................................................................................................... 11 3. Aging. ........................................................................................................ 12 4. Impulse Control. ....................................................................................... 13 5. Perceptual Inaccuracies. .......................................................................... 14 B. Biases ........................................................................................................... 15 1. Endowment Effect. .................................................................................... 15 2. Loss Aversion. ........................................................................................... 16 3. System Neglect. ......................................................................................... 16 4. Hindsight Bias. .......................................................................................... 16 5. Availability Bias. ....................................................................................... 17 6. Confirmation Bias. .................................................................................... 18 7. Framing..................................................................................................... 19 8. Anchoring. ................................................................................................. 19 9. Susceptibility to Overpersuasion. ............................................................. 19 10. Implicit Racial and Gender Biases. ........................................................ 20 C. Problems with Group Decision-Making ...................................................... 21 D. Implications for Decision-Making in Government ...................................... 22 * Edward B. Shils Professor of Law and Director of the Penn Program on Regulation, University of Pennsylvania Law School. This report was prepared for the Administrative Conference of the United States (ACUS) Office of the Chairman project on Agency Decision Making by Artificial Intelligence. The author gratefully acknowledges major contributions to Parts I and II by Alicia Lai, as well as many constructive contributions both to this project and related collaborations by Steven Appel, Lavi Ben Dor, and David Lehr. Helpful comments from Richard Berk, David Rubenstein, and members of the ACUS Committee on Agency Use of Artificial Intelligence are appreciated. Emma Ronzetti and Roshie Xing provided valuable research assistance.The views expressed here are those of the author only and not necessarily of ACUS or its staff or members. 1 II. MACHINE LEARNING’S PROMISE FOR IMPROVING GOVERNMENTAL DECISION- MAKING ................................................................................................................. 23 A. What Makes Machine Learning Different? ................................................. 25 B. Machine Learning’s Advantages in Private-Sector and Medical Decision- Making .............................................................................................................. 27 1. Accuracy. .................................................................................................. 27 2. Capacity. ................................................................................................... 29 3. Speed. ........................................................................................................ 30 4. Consistency. .............................................................................................. 30 C. Current Applications in the Public Sector .................................................... 31 D. Advantages of Machine Learning in Governmental Decision-Making ....... 34 1. Accuracy. .................................................................................................. 34 2. Capacity. ................................................................................................... 35 3. Speed. ........................................................................................................ 36 4. Consistency. .............................................................................................. 37 E. Concerns About the Use of Machine Learning in Government ................... 37 1. Adequate Expertise. .................................................................................. 38 2. Data Storage and Processing Capacity .................................................... 41 3. Cybersecurity. ........................................................................................... 43 4. Privacy. ..................................................................................................... 44 5. Transparency and Explainability. ............................................................. 45 6. Bias. .......................................................................................................... 47 7. Abuse of Power. ........................................................................................ 49 III. LEGAL ISSUES WITH GOVERNMENTAL USE OF MACHINE LEARNING ............... 50 A. Delegation and Accountability .................................................................... 51 B. Procedural Due Process and Reason-Giving ................................................ 52 C. Transparency ................................................................................................ 54 D. Privacy ......................................................................................................... 55 E. Equal Protection ........................................................................................... 59 F. Overall Legal Assessment ............................................................................ 61 IV. DECIDING WHEN TO DEPLOY MACHINE LEARNING ......................................... 62 A. Multi-Factor Analysis of When to Use Machine Learning ......................... 63 B. Key Factors for Deciding Whether to Use Machine Learning .................... 66 1. Preconditions for Use. .............................................................................. 66 2. Improved Outcomes. ................................................................................. 70 3. Legal and Public Acceptance Risks. ......................................................... 72 CONCLUSION .......................................................................................................... 74 2 A Framework for Governmental Use of Machine Learning Cary Coglianese Computerized algorithms increasingly make decisions that previously had been made by humans. These new types of algorithms—known as machine learning algorithms1—have recently found themselves in use in so many products and settings that they appear to portend the reshaping of many important aspects of human life.2 With their distinctive ability to find complex patterns in large datasets, machine learning algorithms are assisting human decision-makers—or independently making forecasts and decisions—on who to hire3 or lend money,4 how to trade stocks,5 and 1 Machine learning algorithms can learn to identify patterns across the vast quantities of data that can now be stored and processed digitally, and they can do so autonomously—that is, without human specification of the form of a particular model or key variables, and subject mainly to overarching criteria or parameters to be optimized. As such, these algorithms are often discussed under the banner of “Big Data” or “artificial intelligence.” For a discussion of machine learning and how it works, see Cary Coglianese & David Lehr, Regulating by Robot: Administrative Decision Making in the Machine-Learning Era, 105 GEO. L.J. 1147, 1156-60 (2017) (hereinafter Regulating by Robot); David Lehr & Paul Ohm, Playing with the Data: What Legal Scholars Should Learn About Machine Learning, 51 UC DAVIS L. REV. 653, 669-702 (2017). Machine learning algorithms come in many forms and are referred to by a variety of terms. See Cary Coglianese & David Lehr, Transparency and Algorithmic Governance, 71 ADMIN. L. REV. 1, 2 n.2 (2019). (hereinafter Transparency) (“By ‘artificial intelligence’ and ‘machine learning,’ we refer … to a broad approach to predictive analytics captured under various umbrella terms, including ‘big data analytics,’ ‘deep learning,’
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages76 Page
-
File Size-