UNIVERSITY OF CALIFORNIA, SAN DIEGO Development and Application of In Situ Marine Inorganic Carbon Sensors: Quantifying Change at High Spatiotemporal Resolution in the Anthropocene A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Oceanography by Philip J. Bresnahan, Jr. Committee in charge: Todd Martz, Chair Andrew Dickson Jules Jaffe Ralph Keeling Yu-Hwa Lo 2015 Copyright Philip J. Bresnahan, Jr., 2015 All rights reserved. SIGNATURE PAGE The Dissertation of Philip J. Bresnahan, Jr., is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2015 iii EPIGRAPH Do unto those downstream as you would have those upstream do unto you. Wendell Berry iv TABLE OF CONTENTS Signature Page ............................................................................................................... iii Epigraph ........................................................................................................................ iv Table of Contents ........................................................................................................... v List of Figures ............................................................................................................... vii List of Tables .................................................................................................................. x Acknowledgements ....................................................................................................... xi Vita .............................................................................................................................. xiv Abstract of the Dissertation .......................................................................................... xv Introduction .................................................................................................................... 1 The Anthropocene .............................................................................................. 1 Ocean Carbon Cycle and Anthropogenic Perturbations ..................................... 2 High Spatiotemporal Resolution, In Situ Monitoring ......................................... 4 Dissertation Outline ............................................................................................ 5 References .......................................................................................................... 9 Chapter 1: Characterization of Gas Diffusion Cell Geometry for a Microfluidic Dissolved Inorganic Carbon Analyzer ......................................................................... 14 Abstract ............................................................................................................. 14 Introduction ...................................................................................................... 14 Experimental Section ........................................................................................ 19 Results and Discussion ..................................................................................... 28 Conclusions ...................................................................................................... 31 Acknowledgements .......................................................................................... 34 References ........................................................................................................ 34 Chapter 2: Development of a Micro-Rosette for In Situ Measurement of Dissolved Inorganic Carbon on Profiling Floats ........................................................................... 38 Abstract ............................................................................................................. 38 Introduction ...................................................................................................... 38 Methods ............................................................................................................ 43 v Results and Discussion ..................................................................................... 58 Conclusions ...................................................................................................... 67 Acknowledgements .......................................................................................... 71 References ........................................................................................................ 72 Chapter 3: Best Practices for Autonomous Measurement of Seawater pH with the Honeywell Durafet ....................................................................................................... 76 Abstract ............................................................................................................77 Introduction ......................................................................................................78 Materials and Methods ......................................................................................79 Results and Discussion .....................................................................................84 Conclusions ......................................................................................................91 References ........................................................................................................92 Acknowledgements .......................................................................................... 94 Chapter 4: A Sensor Package for Mapping pH and Oxygen from Mobile Platforms .. 95 Abstract ............................................................................................................. 95 Introduction ...................................................................................................... 96 Methods ............................................................................................................ 98 Results and Discussion ................................................................................... 105 Conclusions .................................................................................................... 112 Acknowledgements ........................................................................................ 114 References ...................................................................................................... 115 vi LIST OF FIGURES Figure 1.1. Block diagram showing the fluidic circuitry of the bench-top setup. Abbreviations are: variable volume pumps (PSample and PNaOH), solenoid valves (VSample, VAcid, VEject, VLoad, and VElute), static mixing tee (SMT), gas diffusion cell (GDC), and capacitively coupled contactless conductivity detector (C4D).......................................20 Figure 1.2. Typical assemblies of planar (a) and cylindrical (b) GDCs. ¼-28 inlet and outlet ports were machined or printed into the manifolds for connections to PEEK tubing. Section of cylindrical GDC is cut and magnified to show inner cavity and membrane. See Table 1.1 for dimensions.........................................................................................22 Figure 1.3. Single sequence illustrating the C4D response as a function of time. Step 8, 2- CO3 -loaded NaOH elution, is magnified in order to highlight the portion of the routine which is analyzed for DIC.............................................................................................25 Figure 1.4. Results of elution sequences, shown as each elution curve’s baseline minus trough, for sample volumes ranging from 0-300 μL in 60 μL increments. This particular set of experiments utilized the C1 GDC and 900 s diffusion..........................................29 Figure 1.5. Peak integrals, A (mean ± 1 s.d.; n = 10), vs. sample volume for 14 unique GDC and diffusion time experiments. Table 1.1 describes the experimental parameters listed in the legend (legend reads: diffusion time/GDC design).....................................30 Figure 1.6. RSD plotted as a function of sample volume with scale break at RSD = 0.5% to highlight the best performance. Legend as in Figure 1.5............................................31 Figure 2.1. (a) Block diagram of prototype Micro-Rosette, (b) electronics, and (c) fluidics housings............................................................................................................46 Figure 2.2. Valve manifold. Each valve corresponds to a 100 μL storage cell...............48 Figure 2.3. Cylindrical GDC. ¼-28 inlet and outlet ports were machined or printed into the manifolds for connections to PEEK tubing. Schematic is cut and magnified to show inner cavity and membrane............................................................................................49 vii Figure 2.4. Micro-Rosette fastened to bottom of R/V Sproul’s rosette frame, along with 16 Niskin bottles............................................................................................................55 Figure 2.5. (a) SIO1 detector signal across a range of excitation frequencies (103-107 Hz) and conductivity (0-3 mS⋅cm-1). Color illustrates C4D signal and corresponds to C4D signal range as seen in z-axis. (b) Same, on two-dimensional plot with error bars (±1s.d.) and color in legend representing conductivity (mS·cm-1).................................58 Figure 2.6. Frequency and conductivity scans, as in Figure 2.5, with eDAQ 1/16” C4D 4 headstage. Excitation voltage is also varied, Vpp = 3-100 V. Color illustrates C D signal
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages135 Page
-
File Size-