Einselection Without Pointer States

Einselection Without Pointer States

Einselection without pointer states Einselection without pointer states - Decoherence under weak interaction Christian Gogolin Universit¨atW¨urzburg 2009-12-16 C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 1 / 26 Einselection without pointer states j Introduction New foundation for Statistical Mechanics X Thermodynamics X Statistical Mechanics Second Law ergodicity equal a priory probabilities Classical Mechanics [2, 3] C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 2 / 26 Einselection without pointer states j Introduction New foundation for Statistical Mechanics X Thermodynamics X Statistical Mechanics Second Law ergodicity ? equal a priory probabilities Classical Mechanics ? [2, 3] C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 2 / 26 Einselection without pointer states j Introduction New foundation for Statistical Mechanics X Thermodynamics X Statistical Mechanics [2, 3] C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 2 / 26 Einselection without pointer states j Introduction New foundation for Statistical Mechanics X Thermodynamics X Statistical Mechanics * Quantum Mechanics X [2, 3] C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 2 / 26 quantum mechanical orbitals discrete energy levels coherent superpositions hopping Einselection without pointer states j Introduction Why do electrons hop between energy eigenstates? C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 3 / 26 discrete energy levels hopping Einselection without pointer states j Introduction Why do electrons hop between energy eigenstates? quantum mechanical orbitals coherent superpositions C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 3 / 26 Einselection without pointer states j Introduction Why do electrons hop between energy eigenstates? quantum mechanical orbitals discrete energy levels coherent superpositions hopping C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 3 / 26 Einselection without pointer states j Introduction Table of contents 1 Technical introduction 2 Setup 3 Subsystem equilibration 4 Decoherence under weak interaction C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 4 / 26 Einselection without pointer states j Technical introduction Technical introduction C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 5 / 26 Include classical randomness ρ, 2 M(H) = j ih j X Tr[ρ] = hijρjii = 1 hAiρ = Tr[A ρ] i y − i H t ρt = Ut ρ0 Ut Ut = e mixtures: ρ = p 1 + (1 − p) 2 Einselection without pointer states j Technical introduction Quantum Mechanics on one slide Pure Quantum Mechanics j i 2 H A = Ay h j i = 1 hAi = h jAj i − i H t j ti = Ut j 0i Ut = e C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 6 / 26 X Tr[ρ] = hijρjii = 1 hAiρ = Tr[A ρ] i y − i H t ρt = Ut ρ0 Ut Ut = e mixtures: ρ = p 1 + (1 − p) 2 Einselection without pointer states j Technical introduction Quantum Mechanics on one slide Pure Quantum Mechanics j i 2 H A = Ay h j i = 1 hAi = h jAj i − i H t j ti = Ut j 0i Ut = e Include classical randomness ρ, 2 M(H) = j ih j C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 6 / 26 y − i H t ρt = Ut ρ0 Ut Ut = e mixtures: ρ = p 1 + (1 − p) 2 Einselection without pointer states j Technical introduction Quantum Mechanics on one slide Pure Quantum Mechanics j i 2 H A = Ay h j i = 1 hAi = h jAj i − i H t j ti = Ut j 0i Ut = e Include classical randomness ρ, 2 M(H) = j ih j X Tr[ρ] = hijρjii = 1 hAiρ = Tr[A ρ] i C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 6 / 26 mixtures: ρ = p 1 + (1 − p) 2 Einselection without pointer states j Technical introduction Quantum Mechanics on one slide Pure Quantum Mechanics j i 2 H A = Ay h j i = 1 hAi = h jAj i − i H t j ti = Ut j 0i Ut = e Include classical randomness ρ, 2 M(H) = j ih j X Tr[ρ] = hijρjii = 1 hAiρ = Tr[A ρ] i y − i H t ρt = Ut ρ0 Ut Ut = e C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 6 / 26 Einselection without pointer states j Technical introduction Quantum Mechanics on one slide Pure Quantum Mechanics j i 2 H A = Ay h j i = 1 hAi = h jAj i − i H t j ti = Ut j 0i Ut = e Include classical randomness ρ, 2 M(H) = j ih j X Tr[ρ] = hijρjii = 1 hAiρ = Tr[A ρ] i y − i H t ρt = Ut ρ0 Ut Ut = e mixtures: ρ = p 1 + (1 − p) 2 C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 6 / 26 1 deff ( ) = 1 deff ( ) = d d = max Tr[A ρ] − Tr[A σ] 0≤A≤1 Effective dimension 1 deff (ρ) = Tr(ρ2) Time average 1 Z T ! = hρtit = lim ρt dt T !1 T 0 Einselection without pointer states j Technical introduction Technical introduction Trace distance 1 D(ρ, σ) = kρ − σk 2 1 C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 7 / 26 1 deff ( ) = 1 deff ( ) = d d Effective dimension 1 deff (ρ) = Tr(ρ2) Time average 1 Z T ! = hρtit = lim ρt dt T !1 T 0 Einselection without pointer states j Technical introduction Technical introduction Trace distance 1 D(ρ, σ) = kρ − σk 2 1 = max Tr[A ρ] − Tr[A σ] 0≤A≤1 C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 7 / 26 1 deff ( ) = 1 deff ( ) = d d Time average 1 Z T ! = hρtit = lim ρt dt T !1 T 0 Einselection without pointer states j Technical introduction Technical introduction Trace distance 1 D(ρ, σ) = kρ − σk 2 1 = max Tr[A ρ] − Tr[A σ] 0≤A≤1 Effective dimension 1 deff (ρ) = Tr(ρ2) C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 7 / 26 1 deff ( ) = d d Time average 1 Z T ! = hρtit = lim ρt dt T !1 T 0 Einselection without pointer states j Technical introduction Technical introduction Trace distance 1 D(ρ, σ) = kρ − σk 2 1 = max Tr[A ρ] − Tr[A σ] 0≤A≤1 Effective dimension 1 deff (ρ) = deff ( ) = 1 Tr(ρ2) C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 7 / 26 Time average 1 Z T ! = hρtit = lim ρt dt T !1 T 0 Einselection without pointer states j Technical introduction Technical introduction Trace distance 1 D(ρ, σ) = kρ − σk 2 1 = max Tr[A ρ] − Tr[A σ] 0≤A≤1 Effective dimension 1 1 deff (ρ) = deff ( ) = 1 deff ( ) = d Tr(ρ2) d C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 7 / 26 Einselection without pointer states j Technical introduction Technical introduction Trace distance 1 D(ρ, σ) = kρ − σk 2 1 = max Tr[A ρ] − Tr[A σ] 0≤A≤1 Effective dimension 1 1 deff (ρ) = deff ( ) = 1 deff ( ) = d Tr(ρ2) d Time average 1 Z T ! = hρtit = lim ρt dt T !1 T 0 C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 7 / 26 Explicit construction P 1 expand in basis: j i = i ci jii hijji = δij 2 choose ci from a normal distribution P 2 3 normalize 1 = i jcij h j i = 1 Einselection without pointer states j Technical introduction Choosing random states Mathematical construction Haar measure on SU(n) −! \uniform" distribution µ(V ) = µ(UV ) U j0i = j i Prfj ig = PrfU j ig C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 8 / 26 Einselection without pointer states j Technical introduction Choosing random states Mathematical construction Haar measure on SU(n) −! \uniform" distribution µ(V ) = µ(UV ) U j0i = j i Prfj ig = PrfU j ig Explicit construction P 1 expand in basis: j i = i ci jii hijji = δij 2 choose ci from a normal distribution P 2 3 normalize 1 = i jcij h j i = 1 C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 8 / 26 Einselection without pointer states j Setup Setup C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 9 / 26 Einselection without pointer states j Setup Setup System, HS; H S Bath, HB; H B H SB S B ρt = TrB[ t] ρt = TrS[ t] 1 S Tr[(AS ⊗ B) t] = Tr[AS ρt ] reduced state ! locally observable C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 10 / 26 1 S Tr[(AS ⊗ B) t] = Tr[AS ρt ] reduced state ! locally observable Einselection without pointer states j Setup Setup System, HS; H S Bath, HB; H B H SB S B ρt = TrB[ t] ρt = TrS[ t] d t dt = i [ t; H ] C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 10 / 26 H 0 + H 0 / 1 Tr[H S] = Tr[H B] = Tr[H SB] = 0 Assumption A Hamiltonian has non{degenerate energy gaps iff: Ek − El = Em − En =) k = l ^ m = n or k = m ^ l = n Einselection without pointer states j Setup A very weak assumption on the Hamiltonian H = H S ⊗1 + 1 ⊗ H B + H SB C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 11 / 26 Assumption A Hamiltonian has non{degenerate energy gaps iff: Ek − El = Em − En =) k = l ^ m = n or k = m ^ l = n Einselection without pointer states j Setup A very weak assumption on the Hamiltonian H = H 0 + H S ⊗1 + 1 ⊗ H B + H SB H 0 / 1 Tr[H S] = Tr[H B] = Tr[H SB] = 0 C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 11 / 26 Einselection without pointer states j Setup A very weak assumption on the Hamiltonian H = H 0 + H S ⊗1 + 1 ⊗ H B + H SB H 0 / 1 Tr[H S] = Tr[H B] = Tr[H SB] = 0 Assumption A Hamiltonian has non{degenerate energy gaps iff: Ek − El = Em − En =) k = l ^ m = n or k = m ^ l = n C.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    62 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us