Physics of Compact Stars

Physics of Compact Stars

Physics of Compact Stars • Crab nebula: Supernova 1054 • Pulsars: rotating neutron stars • Death of a massive star • Pulsars: lab’s of many-particle physics • Equation of state and star structure • Phase diagram of nuclear matter • Rotation and accretion • Cooling of neutron stars • Neutrinos and gamma-ray bursts • Outlook: particle astrophysics David Blaschke - IFT, University of Wroclaw - Winter Semester 2007/08 1 Example: Crab nebula and Supernova 1054 1054 Chinese Astronomers observe ’Guest-Star’ in the vicinity of constellation Taurus – 6times brighter than Venus, red-white light – 1 Month visible during the day, 1 Jahr at evenings – Luminosity ≈ 400 Million Suns – Distance d ∼ 7.000 Lightyears (ly) (when d ≤ 50 ly Life on earth would be extingished) 1731 BEVIS: Telescope observation of the SN remnants 1758 MESSIER: Catalogue of nebulae and star clusters 1844 ROSSE: Name ’Crab nebula’ because of tentacle structure 1939 DUNCAN: extrapolates back the nebula expansion −! Explosion of a point source 766 years ago 1942 BAADE: Star in the nebula center could be related to its origin 1948 Crab nebula one of the brightest radio sources in the sky CHANDRA (BLAU) + HUBBLE (ROT) 1968 BAADE’s star identified as pulsar 2 Pulsars: Rotating Neutron stars 1967 Jocelyne BELL discovers (Nobel prize 1974 for HEWISH) pulsating radio frequency source (pulse in- terval: 1.34 sec; pulse duration: 0.01 sec) Today more than 1700 of such sources are known in the milky way ) PULSARS Pulse frequency extremely stable: ∆T=T ≈ 1 sec/1 million years 1968 Explanation of the phenomenon GOLD as ) RO- TATING NEUTRON STARS, since: – only Rotation explains high precision of pulses – only small objects (R ≈ 10 km) can have so small pulse duations 1969 Discovery of the pulsar in the Crab nebula Connection established: SUPERNOVA - NEUTRON STAR - PULSAR 1968 Discovery of the binary Pulsar PSR 1913+16 by HULSE and TAYLOR (Nobel prize 1993) 3 What happens in a Supernova-Explosion ? Two Szenarios after ceasing of nuclear fusion reactions in the star interior • Supernova Type I (Carbon core): Explosive ’Burning’, star is completely destroyed • Supernova Type II (Iron core): Implosion due to gravitational instability, subsequent shockwave explosion and neutrino emission ) blast of the star envelope, star interior collapses ) NEUTRON STAR or BACK HOLE Neutron star-Properties: • Radius: R ≈ 10 km • Density: ρ ≈ 1014 : : : 1015 g/cm3 30 • Mass: M ≈ M = 2 × 10 kg • Rotation: Period T < 1 sec, for progenitor star T ≈ 30 d (Sun) • Magnetic field: contraction increases the density of field lines dramatically 12 ! H=Hearth ≈ 10 4 Pulsars: Laboratories for Many-particle Physics Glitches: Superfluid Nuclear Matter 1970 1975 1980 11.21 11.208 11.206 Frequenzy f (Hz) 11.204 11.202 0 2000 4000 6000 Julian Date −2440000.5 Nature of Glitches: Vortex-Crust Unpinning ! suddenly smaller momet of inertia ! jump in Ω = dφ/dt (angular momentum conserva- tion) Lecture: Astronomie II online, Notebook University Rostock (NUR) http://www.mpg.uni-rostock.de/tap/astro/ 5 Phase diagram for QCD Matter at high densities Big Bang Quark-Gluon-Plasma 1.5 RHIC, LHC (construction) Challenge to Experiments DECONFINEMENT CERN-SPS FAIR (Project) and Questions to AGS Brookhaven Theory: H Hadron gas [T =140 MeV] [T =140 • How do Quarks get their SIS Darmstadt masses (χSB)? Quark Matter • Why are there no free Quarks QCD - Lattice Gauge Theory Super- Temperature Novae Heavy Ion Collisions and Gluons (Confinement)? CONFINEMENT COLOR SUPERCONDUCTIVITY 0.1 Nuclear matter Neutron / Quark Stars -3 1 Baryon Density 3 [n ο =0.16 fm ] Virtual Institute (2003-06): “Dense hadronic matter and QCD phase transitions” (UNIs Bielefeld, Darmstadt, Frankfurt, Giessen, Rostock, Tubingen¨ mit GSI Darmstadt) 6 Equation of State and Stability of Compact Stars Tolman-Oppenheimer-Volkoff Equations 1. Stability: General Relativistic Hydrostatic Equilibrium − dP (r) m(r)"(r) P (r) 4πr3P (r) 2Gm(r) 1 = −G 1 + 1 + 1 − dr r2 "(r) m(r) r NEWTON EINSTEIN CORRECTIONS GENERAL REL. THEORY R 2 2. Mass Distribution: m(R) = 0 "(r) 4π r dr R 2.5 0.7 0.6 0.5 RX J1856 0.4 EXO 0748-676 2.0 causality 4Uconstraint 1636-536 0.3 ] -3 2 10 ] 0.2 sun 1.5 4U 0614 +09 Flow constraint XTE J1739-285 DBHF (Bonn A) M [M 1.0 η η DBHF D = 0.92, V = 0.0 z = 0.1 P [MeV fm η = 0.92, η = 0.0 η η D V D = 1.00, V = 0.5 η η η = 1.02, η = 0.5 D = 1.00, V = 0.5 D V 1 0.5 η η η = 1.03, η = 0.5 D = 1.03, V = 0.5 10 D V η η η η D = 1.00, V = 0.0 D = 1.02, V = 0.5 0 0.2 0.4 0.6 0.8 1 8 10 12 14 -3 n [fm ] R [km] 7 N =1.55 N N =1.8 N NB=1.3 NO B O B O 15 R R e R Rotation and Star Structure e e 12 R R p R p H p Axially symmetric solutions of the EINSTEIN- 9 equations for compact stars show:: H r [km] H M • Deformation (Excentricity) 6 M • new density distribution (centrifugal forces) 3 Q Q • further general relativity effects M 0 0 2 4 6 0 2 4 6 0 2 4 6 Ω [kHz] Ω [kHz] Ω [kHz] Ω No Stationary Rotating Stars Phase transition to Quark matter depends on 150 88 Mass (Baryon number N) and Angular veloc- Ω 144 ity (Ω = dφ/dt) of the Star! 132 126 66 114 108 102 120 96 90 84 78 72 66 Phase diagram (Ω − N plane) =) 60 visualizes observable Signals: 44 • Braking index (spin-down) 22 • Population-clustering (accretion) Hadronic Stars Quark Core Stars Black Holes Moment of inertia () Phase transition! 0 2 4 6 [kHz] 22 11 1.51.5 N 2.252.25 1.751.75 1.251.251.25 1.5 1.75 2.0 N/N . 8 Low-mass X-ray Binary (LMXB) LMXB’s show: • Accretion (N - Evolution) • X-ray bursts with quasiperiodic Brightness Oscillations (QPO’s) • further general rel. effects (ISCO) 10 1.6 over 100 million years 9 about 60 million years 1.4 8 No Stationary Rotating Stars Phase transition Signal: 1.2 7 N (Ω) ) Population clustering at Ncrit(Ω) crit Ω Ω (N) ( 1.0 6 max max N 5 0.8 {kHz] Hadronic Stars [kHz] QPO-Phenomenon gives informations about: ν Ω 4 0.6 • Mass-radius relation 3 0.6 TG 0.4 Black Holes • 2 1.0 TG Rotation frequency 0.2 1 Quark Core Stars Ω−N plane () Hertzsprung-Russell- 0 0 1.2 1.4 1.6 1.8 2 2.2 Diagram for QPO’s! N [Nsun] 9 Cooling of Compact Stars-Results Cooling of Hybrid stars with 2SC Quark core T =40 MeV T = 0 HJ (Y - 3P *0.1) with K = 240 MeV with Med. effects, our crust, Gaussian FF 2 ν γ e ν e γ γ 1.10 γ 1.214 critical γ γ 1.217 QM γ γ 6.4 ν ν 2SC 1.25 e e ν e Crab 1.32 1.42 γ RX J0822-43 ν γ 1.5 γ e 1.65 1.75 γ 6.2 1E 1207-52 1.793 ν e γ γ RX J0002+62 [K]) s PSR J0205+64 in 3C58 6 PSR 0656+14 log(T PSR 1055-52 Vela Neutrinos carry energy off the star Geminga 5.8 CTA 1 =) Cooling evolution given by j dT (t) γ + j=URCA;::: ν RX J1865-3754 = − 5.6 P i dt i=q,e,γ;::: cV 1 2 3 4 5 6 7 P log(t[yr]) - • Enhanced Cooling by URCA ) Signal ν • 2SC+X phase, ∆X ∼ 30 keV e- • Pulsar in 3C58 - candidate for a Quark Star? Grigorian, DB, Voskresensky: Phys. Rev. C 71 d u (2005) 10 Magnetic Quark Star: Neutrino Beam { Gamma-Ray-Burst • Neutrinos trapped in a star when temperature T > 1 MeV (≈ 1010K) ! mean free path R vortex star surface • 2SC quark matter core with magnetic vortices (B∼ 1016 G) superconductor • Beamed emission neutrinos, ∆E ∼ 1052 erg R ν,ν G λ G ν G e + ν • Conversion of neutrinos ! photons: Gamma-Ray Burst (?) γ θ ν ν,ν γ ν e 1e+53 13 B = 10 G conversion 14 1e+52 B = 10 G 15 B = 10 G 1e+51 16 B = 10 G 17 L [erg/s] 1e+50 B = 10 G 30 20 T [MeV] 10 1 0.1 [grad] ν θ 0.01 0.1 1 10 100 1000 t [s] 11 Puzzling Compact Star Phenomena - Quark Star Candidates? Quasiperiodic Brightness Oscillations (QPO’s) in Low-mass X-Ray Binaries (LMXB’s) ) Limits for Mass - Radius - Relation ) 2 M too large mass for quark stars? ( Rossi-XTE LMXB ) Gamma-Ray Bursts (GRB), extragalactic, extremely bright, Connection to Supernova Explosions ) Which Engine ∼ 1052 erg ? ( INTEGRAL GRB 990123 ) Isolated X-ray source (RX J18565), 17 km radiation radius ) too big for a Neutron Star? ( HUBBLE RX J1856.5-3754 ) Pulsar in Supernova Remnant (3C58; AD 1181) with Temperature T = 106 K ) too cold for a Neutron Star? ( CHANDRA 3C58 ) 12 Wide variety of supernovas - progenitor mass dependence 13 Supernova Collapse in the Phase Diagram 2 Supernova evolution 10 in the phase diagram [MeV] T Nuclear matter 101 temperature 2SC 100 108 109 1010 1011 1012 1013 1014 1015 density ρ [g cm-3] 14 Supernova Collapse in the Phase Diagram (II) 2 Supernova evolution 10 in the phase diagram [MeV] T Nuclear matter 101 15 Msun (Harald Dimmelmeier) temperature 2SC 100 108 109 1010 1011 1012 1013 1014 1015 density ρ [g cm-3] 15 Supernova Collapse in the Phase Diagram 2 40 Msun 10 (Tobias Fischer) [MeV] T 101 15 Msun (Harald Dimmelmeier) temperature 100 108 109 1010 1011 1012 1013 1014 1015 density ρ [g cm-3] 16 The case of SN2006gy 17 The case of SN2006gy - a Quarknova ? Light curve: 70 days rise time Discovery: Sept.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    20 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us