Multivariate Normal Distribution Form Normal Density Function (Multivariate)

Multivariate Normal Distribution Form Normal Density Function (Multivariate)

Introduction to Normal Distribution Nathaniel E. Helwig Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities) Updated 17-Jan-2017 Nathaniel E. Helwig (U of Minnesota) Introduction to Normal Distribution Updated 17-Jan-2017 : Slide 1 Copyright Copyright c 2017 by Nathaniel E. Helwig Nathaniel E. Helwig (U of Minnesota) Introduction to Normal Distribution Updated 17-Jan-2017 : Slide 2 Outline of Notes 1) Univariate Normal: 3) Multivariate Normal: Distribution form Distribution form Standard normal Probability calculations Probability calculations Affine transformations Affine transformations Conditional distributions Parameter estimation Parameter estimation 2) Bivariate Normal: 4) Sampling Distributions: Distribution form Univariate case Probability calculations Multivariate case Affine transformations Conditional distributions Nathaniel E. Helwig (U of Minnesota) Introduction to Normal Distribution Updated 17-Jan-2017 : Slide 3 Univariate Normal Univariate Normal Nathaniel E. Helwig (U of Minnesota) Introduction to Normal Distribution Updated 17-Jan-2017 : Slide 4 Univariate Normal Distribution Form Normal Density Function (Univariate) Given a variable x 2 R, the normal probability density function (pdf) is 2 1 − (x−µ) f (x) = p e 2σ2 σ 2π (1) 1 (x − µ)2 = p exp − σ 2π 2σ2 where µ 2 R is the mean σ > 0 is the standard deviation( σ2 is the variance) e ≈ 2:71828 is base of the natural logarithm Write X ∼ N(µ, σ2) to denote that X follows a normal distribution. Nathaniel E. Helwig (U of Minnesota) Introduction to Normal Distribution Updated 17-Jan-2017 : Slide 5 Univariate Normal Standard Normal Standard Normal Distribution If X ∼ N(0; 1), then X follows a standard normal distribution: 1 2 f (x) = p e−x =2 (2) 2π 0.4 ) x ( 0.2 f 0.0 −4 −2 0 2 4 x Nathaniel E. Helwig (U of Minnesota) Introduction to Normal Distribution Updated 17-Jan-2017 : Slide 6 Univariate Normal Probability Calculations Probabilities and Distribution Functions Probabilities relate to the area under the pdf: Z b P(a ≤ X ≤ b) = f (x)dx a (3) = F(b) − F(a) where Z x F(x) = f (u)du (4) −∞ is the cumulative distribution function (cdf). Note: F(x) = P(X ≤ x) =) 0 ≤ F(x) ≤ 1 Nathaniel E. Helwig (U of Minnesota) Introduction to Normal Distribution Updated 17-Jan-2017 : Slide 7 Univariate Normal Probability Calculations Normal Probabilities Helpful figure of normal probabilities: 34.1% 34.1% 2.1% 2.1% 0.1% 13.6% 13.6% 0.1% 0.0 0.1 0.2 0.3 0.4 −3σ −2σ −1σ1σ µ 2σ 3σ From http://en.wikipedia.org/wiki/File:Standard_deviation_diagram.svg Nathaniel E. Helwig (U of Minnesota) Introduction to Normal Distribution Updated 17-Jan-2017 : Slide 8 Univariate Normal Probability Calculations Normal Distribution Functions (Univariate) Helpful figures of normal pdfs and cdfs: 1.0 1.0 μ= 0, σ 2= 0.2, μ= 0, σ 2= 0.2, μ= 0, σ 2= 1.0, μ= 0, σ 2= 1.0, 0.8 μ= 0, σ 2= 5.0, 0.8 μ= 0, σ 2= 5.0, μ= −2, σ 2= 0.5, μ= −2, σ 2= 0.5, ) 0.6 ) 0.6 x x ( ( 2 2 μ,σ μ,σ 0.4 -3 -2 -1 0.4 -3 -2 -1 φ Φ 0.2 0.2 0.0 0.0 −5 −3 −2−4 −1 01 2 3 4 5 −5 −3 −2−4 −1 01 2 3 4 5 x x http://en.wikipedia.org/wiki/File:Normal_Distribution_PDF.svg http://en.wikipedia.org/wiki/File:Normal_Distribution_CDF.svg Note that the cdf has an elongated “S” shape, referred to as an ogive. Nathaniel E. Helwig (U of Minnesota) Introduction to Normal Distribution Updated 17-Jan-2017 : Slide 9 Univariate Normal Affine Transformations Affine Transformations of Normal (Univariate) Suppose that X ∼ N(µ, σ2) and a; b 2 R with a 6= 0. If we define Y = aX + b, then Y ∼ N(aµ + b; a2σ2). Suppose that X ∼ N(1; 2). Determine the distributions of. Y = X + 3 Y = 2X + 3 Y = 3X + 2 Nathaniel E. Helwig (U of Minnesota) Introduction to Normal Distribution Updated 17-Jan-2017 : Slide 10 Univariate Normal Affine Transformations Affine Transformations of Normal (Univariate) Suppose that X ∼ N(µ, σ2) and a; b 2 R with a 6= 0. If we define Y = aX + b, then Y ∼ N(aµ + b; a2σ2). Suppose that X ∼ N(1; 2). Determine the distributions of. Y = X + 3 =) Y ∼ N(1(1) + 3; 12(2)) ≡ N(4; 2) Y = 2X + 3 =) Y ∼ N(2(1) + 3; 22(2)) ≡ N(5; 8) Y = 3X + 2 =) Y ∼ N(3(1) + 2; 32(2)) ≡ N(5; 18) Nathaniel E. Helwig (U of Minnesota) Introduction to Normal Distribution Updated 17-Jan-2017 : Slide 10 Univariate Normal Parameter Estimation Likelihood Function Suppose that x = (x1;:::; xn) is an iid sample of data from a normal 2 iid 2 distribution with mean µ and variance σ , i.e., xi ∼ N(µ, σ ). The likelihood function for the parameters (given the data) has the form n n 2 2 Y Y 1 (xi − µ) L(µ, σ jx) = f (xi ) = p exp − 2 2σ2 i=1 i=1 2πσ and the log-likelihood function is given by n n X n n 1 X LL(µ, σ2jx) = log(f (x )) = − log(2π)− log(σ2)− (x −µ)2 i 2 2 2σ2 i i=1 i=1 Nathaniel E. Helwig (U of Minnesota) Introduction to Normal Distribution Updated 17-Jan-2017 : Slide 11 Univariate Normal Parameter Estimation Maximum Likelihood Estimate of the Mean The MLE of the mean is the value of µ that minimizes n n X 2 X 2 2 (xi − µ) = xi − 2nx¯µ + nµ i=1 i=1 Pn where x¯ = (1=n) i=1 xi is the sample mean. Taking the derivative with respect to µ we find that @ Pn (x − µ)2 i=1 i = −2nx¯ + 2nµ ! x¯ =µ ^ @µ i.e., the sample mean x¯ is the MLE of the population mean µ. Nathaniel E. Helwig (U of Minnesota) Introduction to Normal Distribution Updated 17-Jan-2017 : Slide 12 Univariate Normal Parameter Estimation Maximum Likelihood Estimate of the Variance The MLE of the variance is the value of σ2 that minimizes n Pn 2 2 n 1 X n x nx¯ log(σ2) + (x − µ^)2 = log(σ2) + i=1 i − 2 2σ2 i 2 2σ2 2σ2 i=1 Pn where x¯ = (1=n) i=1 xi is the sample mean. Taking the derivative with respect to σ2 we find that n 2 1 Pn 2 n @ log(σ ) + 2 = (xi − µ^) n 1 X 2 2σ i 1 = − (x − µ^)2 @σ2 2σ2 2σ4 i i=1 2 Pn 2 which implies that the sample variance σ^ = (1=n) i=1(xi − x¯) is the MLE of the population variance σ2. Nathaniel E. Helwig (U of Minnesota) Introduction to Normal Distribution Updated 17-Jan-2017 : Slide 13 Bivariate Normal Bivariate Normal Nathaniel E. Helwig (U of Minnesota) Introduction to Normal Distribution Updated 17-Jan-2017 : Slide 14 Bivariate Normal Distribution Form Normal Density Function (Bivariate) Given two variables x; y 2 R, the bivariate normal pdf is n h 2 2 io exp − 1 (x−µx ) + (y−µy ) − 2ρ(x−µx )(y−µy ) 2(1−ρ2) σ2 σ2 σx σy f (x; y) = x y (5) p 2 2πσx σy 1 − ρ where µx 2 R and µy 2 R are the marginal means + + σx 2 R and σy 2 R are the marginal standard deviations 0 ≤ jρj < 1 is the correlation coefficient 2 2 X and Y are marginally normal: X ∼ N(µx ; σx ) and Y ∼ N(µy ; σy ) Nathaniel E. Helwig (U of Minnesota) Introduction to Normal Distribution Updated 17-Jan-2017 : Slide 15 Bivariate Normal Distribution Form p 2 2 Example: µx = µy = 0, σx = 1, σy = 2, ρ = 0:6= 2 0.12 4 0.12 0.10 2 0.10 0.08 ) 0.08 y , 0 ) y x 0.06 y ( , 0.06 f x ( f 0.04 0.04 4 −2 0.02 2 0 0.02 −4 −4 −2 −2 y 0 2 −4 −4 −2 0 2 4 0.00 4 x x http://en.wikipedia.org/wiki/File:MultivariateNormal.png Nathaniel E. Helwig (U of Minnesota) Introduction to Normal Distribution Updated 17-Jan-2017 : Slide 16 Bivariate Normal Distribution Form Example: Different Means µx = 0, µy = 0 µx = 1, µy = 2 µx = −1, µy = −1 0.12 0.12 0.12 4 4 4 0.10 0.10 0.10 2 2 2 0.08 0.08 0.08 ) ) ) y y y , , , 0 0 0 y y y x x x 0.06 0.06 0.06 ( ( ( f f f 0.04 0.04 0.04 −2 −2 −2 0.02 0.02 0.02 −4 −4 −4 −4 −2 0 2 4 0.00 −4 −2 0 2 4 0.00 −4 −2 0 2 4 0.00 x x x p 2 2 Note: for all three plots σx = 1, σy = 2, and ρ = 0:6= 2. Nathaniel E. Helwig (U of Minnesota) Introduction to Normal Distribution Updated 17-Jan-2017 : Slide 17 Example: Different Correlations Nathaniel E. Helwig (U of Minnesota) Note: for all three plots Bivariate Normal Introduction to Normal Distribution µ x = µ Distribution Form ρ y = −0.6/ 2 ρ = 0 ρ = 1.2/ 2 = 0.12 0.20 4 4 4 0.10 0, 0.10 2 2 2 0.08 0.15 σ 0.08 ) ) ) x 2 y y y , , , 0.06 0 0 0 y y y x x x = 0.06 0.10 ( ( ( f f f 0.04 0.04 −2 −2 −2 1, and 0.05 0.02 0.02 −4 −4 −4 Updated 17-Jan-2017 : Slide 18 −4 −2 0 2 4 0.00 −4 −2 0 2 4 0.00 −4 −2 0 2 4 0.00 x x x σ y 2 = 2.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    56 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us