The Mindblowing Evolution of Humanoid Robots Including the “iCub” That Has a “Sense of Self” By Nicholas West | Activist Post This is an update to the chronicle detailing the evolution of humanoid robots (with videos) In the age of computers, things evolve exponentially. In just a few generations robots have gone from a scientific fantasy, to a playful curiosity, to entering the battlefield to replace and/or augment their human counterparts. We are already at the point where we have to consider what the next step of robotic evolution looks like. According to robotics engineers, it appears that at some point in the near future the next step could very well be whatever the next generation robot chooses for itself. Just late last year it was posited that the humanoid robot was poised to take a leap from a mere facsimile of human behavior to one that futurists suggest will not only walk like a human, but will possess self awareness, as well as a full range of high-tech computational spectrum analysis and capabilities . and emotions. That day has apparently now arrived. The chronicle below charts the advancement from the rudimentary, through the downright creepy, and toward today where, according to the final video from New Scientist, we see that the new generation of iCub humanoid robot can in fact determine its own goals and exhibit emotional behavior and language skills that so far have been exclusively human. So far, development in humanoid robots has been limited to their physicality. A level of advancement has now been achieved that it is leading to serious concern about the economic impact of humans being outsourced to robots for tasks as diverse as service, manufacturing, nursing, housework, yard maintenance and full-fledged agricultural duties. Some are predicting that robots of all types could fully replace humans by 2045. Artificial intelligence is now advancing to a point where a new type of brain can be offered to compliment the relatively menial tasks of modern-day robotics, hinting at the next stage of evolution. It is typical of any science with military applications to evolve in a dual- or even multi-use fashion. For example, humanoid robots were initially advertised as a study in how to benefit those who have lost limbs; and, indeed, this has been a noted benefit. However, the real money — the black budget money — goes into applications which can be downright frightening. Enter DARPA, which had already been working on its own projects, but through its Robotics Grand Challenge has spurred a huge influx of inventors looking to receive DARPA funding to offer the next generation of humanoids. The Challenge has been couched in the comforting language of “disaster response” research, but what is emerging seems to be capable of far more than that: The primary goal of the DARPA Robotics Challenge program is to develop ground robotic capabilities to execute complex tasks in dangerous, degraded, human-engineered environments. The program will focus on robots that can utilize available human tools, ranging from hand tools to vehicles. The program aims to advance the key robotic technologies of supervised autonomy, mounted mobility, dismounted mobility, dexterity, strength, and platform endurance. Supervised autonomy will be developed to allow robot control by non- expert operators, to lower operator workload, and to allow effective operation despite low fidelity (low bandwidth, high latency, intermittent) communications. (Source) From the task section: The specific tasks are: 1) The robot will maneuver to a open frame utility vehicle, such as a John Deere Gator or a Polaris Ranger. The robot is to get into the driver’s seat and drive it to a specified location. 2) The robot is to get out of the vehicle, maneuver to a locked door, unlock it with a key, open the door, and go inside. 3) The robot will traverse a 100 meter, rubble strewn hallway. 4) At the end of the hallway, the robot will climb a ladder. 5) The robot will locate a pipe that is leaking a yellow- colored gas (non-toxic, non-corrosive). The robot will then identify a valve that will seal the pipe and actuate that valve, sealing the pipe. 6) The robot will locate a broken pump and replace it. The robot will be teleoperated, at least at the supervisory level. DARPA will control the communications bandwidth and latency, in order to make the task more difficult and force higher levels of autonomous behavior. If necessary, this control over communications will be used to discriminate performance levels between competitors and select a winner. […] The goal of this Grand Challenge is to create a humanoid robot that can operate in an environment built for people and use tools made for people. The specific challenge is built around an industrial disaster response. The current array of robots designed over the last few years to match human capability demonstrate what is listed above, and then some: PETMAN: An anthropomorphic robot designed for testing chemical protection clothing. Its range of motion allows it to balance, walk, crawl, and even climb stairs, while also having the ability to simulate human physiology such as sweating. (Source) B.E.A.R: Battlefield Extraction Assist Robot. Demonstrates a wide range of capability, while adding a semi-human appearance. https://www.youtube.com/watch?v=mnDM6xI9tmg ARM: A new level of robotic hand that employs an opposable thumb to increase dexterity vs. the robot seen above which uses plier-like grips. The ARM is capable of unlocking and opening doors, as well as picking up thin objects like cards or keys. (Source) Golf robot: This might seem like a goofy novelty, but golf is an extremely precise sport with a lot of room for error — humans can play for decades and never reach a level of mastery. The golf robot can fire shot after shot with stunning accuracy from a long distance. This ad for the European Tour has the added benefit of offering the “coolness” factor to all ages. (Source) And, naturally, this has all evolved into anything but fun and games. The evolution of PETMAN is an actual Terminator-like robot called ATLAS. Meanwhile, even mainstream institutions like Cambridge and major international human rights groups say that “terminators” are one of the greatest threats to humanity. As you’ll see in the next video, ATLAS has advanced quite a bit since its introduction in July of 2013. While ATLAS still proceeds slowly on its tether, it is moving with far better agility than its previous incarnation: However, these are still just workhorses and advanced tools of human mimicry. For these creations to get to the next level, they have to become self-aware and eventually autonomous. The computing power is certainly arriving as evidenced by what has been achieved through flying drone swarms and work being done on autonomous, interconnected battlefield systems such as MUSIC. Transhumanist icon Ray Kurzweil’s website featured a story about Samsung’s Roboray, which just got a major upgrade. Roboray still has an obviously robotic physical look, but its “intelligence” is increasing: Roboray can now build real-time 3D visual maps, so he can walk around without being spaced out and wandering off. Roboray has stereo cameras (one in each eye), allowing him to build a mental map of its surroundings, and to “remember” where he has been before. That kind of autonomous robot navigation will also come in handy in places where there’s no GPS signal. Furthermore, its walking demo as shown in the video below make it appear more humanoid than its initial outward appearance, something desirable for those who seek to make the human-to- robot emotional connection: Roboray walks in a more human-like manner by using “dynamic walking” — actually falling at every step, and using gravity to carry himself forward. Which is how humans naturally walk. So this makes him better accepted by people and more energy-efficient, says team leader Dr. Walterio Mayol-Cuevas, Deputy Director of the Bristol Robotics Lab. For the next phase of development, it is always important to watch the battlefield, but we should also watch for the signs of marketing that aims to normalize the robot presence in our day-to-day lives. This is being attempted through next-level artificial intelligence calledEmbodied General Intelligence (essentially, common sense). The next phase of humanoid robots are those that become virtually indistinguishable from us. There is no lack of effort to try to make this happen. Here is an ongoing Indiogogo project to give humanoid robot Adam Z1 a real brain. This is an effort that also has parallels with NeuroGaming. These two videos leave nothing to the imagination as to what the endgame is: not only the economic acceptance of robots, but the emotional acceptance. Not that long from now, full-sized humanoid robots will be in wide use as personal assistants, etc. And cheaper versions will be widespread as toys before long: think “RoboSapien with a cute face and a cloud-based mind.” GENI Lab So the team has formed GENI Lab, whose medium-term goal is “the creation of a life-sized humanoid robot featuring a realistic, emotional face and personality; a fluidly moving body, based on the integration of analog, digital and mechanical control; an adaptive general intelligence, utilizing the OpenCog architecture and the DeSTIN machine vision system; capability of simple — but socially and emotionally savvy — communication in English and ultimately other natural languages; and communication about its physical environment and its tasks and behaviors therein.” iCub This robot is an attempt to put it all together, including tactile sensations and learning from those contact interactions.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages15 Page
-
File Size-