University of California, San Diego

University of California, San Diego

UNIVERSITY OF CALIFORNIA, SAN DIEGO Stretching and twisting chromatin A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Engineering Science (Engineering Physics) by Irina V. Dobrovolskaia Committee in charge: Professor Gaurav Arya, Chair Professor Prabhakar Bandaru Professor Sergei Krasheninikov Professor Bo Li Professor Vlado Lubarda 2012 © Irina V. Dobrovolskaia, 2012 All rights reserved. The Dissertation of Irina V. Dobrovolskaia is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2012 iii TABLE OF CONTENTS Signature Page...............................................................................................................iii List of Figures...............................................................................................................vii List of Tables................................................................................................................viii Acknowledgments..........................................................................................................ix Vita..................................................................................................................................x Publications.....................................................................................................................x Abstract of the Dissertation...........................................................................................xi 1. Introduction.................................................................................................................1 1.1. DNA structure and function................................................................................1 1.2. Chromatin as a DNA packager............................................................................3 1.3. Chromatin as a gene regulator.............................................................................8 1.4. Forces on chromatin .........................................................................................12 1.5. Torsional forces on chromatin...........................................................................17 1.6. Thesis objective.................................................................................................21 1.7. References.........................................................................................................23 2. Force-induced unraveling of nucleosomes................................................................36 2.1. Introduction.......................................................................................................36 2.2. Model Development..........................................................................................38 2.2.1 Modeling of DNA and histone octamer......................................................39 2.2.2 Brownian dynamics simulations.................................................................43 iv 2.2.3 Parametrization of octamer groove charges...............................................46 2.3. Results...............................................................................................................51 2.3.1 Force-extension behavior............................................................................52 2.3.2 DNA unwrapping dynamics.......................................................................54 2.3.3 Kinematics of nucleosome unraveling........................................................57 2.3.4 Energetics of nucleosome unraveling.........................................................62 2.3.5 Role of non-uniform DNA/histone interactions.........................................64 2.4. Discussion.........................................................................................................70 Acknowledgments.........................................................................................................74 2.5. References ........................................................................................................74 3. Torsional behavior of dinucleosome arrays..............................................................80 3.1. Introduction.......................................................................................................80 3.2. Model and Simulation Methods........................................................................83 3.2.1 Linker and nucleosome model ...................................................................83 3.2.2 Dinucleosome mechanics and energetics...................................................85 3.2.3 Monte Carlo twisting protocol....................................................................88 3.3. Results...............................................................................................................90 3.3.1 Twist inversion............................................................................................90 3.3.2 Nucleosome flipping...................................................................................96 3.4. Discussion.......................................................................................................101 Acknowledgments.......................................................................................................105 3.5. References.......................................................................................................106 v 4. Conclusions and future work..................................................................................109 4.1. Summary.........................................................................................................109 4.2. Future directions..............................................................................................111 4.3. References.......................................................................................................113 Appendix 1..................................................................................................................114 Appendix 2..................................................................................................................115 vi LIST OF FIGURES Figure 1.1: DNA double helix.........................................................................................2 Figure 1.2: Top and side view of the crystal structure of the nucleosome core. ............5 Figure 1.3: Major structures involved in DNA compaction............................................7 Figure 1.4: Single molecule experimental techniques and their natural force ranges.. 13 Figure 1.5: Forces and torques imposed by chromatin-acting enzyme.........................14 Figure 2.1: Coarse-grained model of the nucleosome..................................................39 Figure 2.2: Normalized charge values assigned to the octamer groove beads as a function of their location along the wound DNA relative to the dyad.......48 Figure 2.3: Mean unraveling force as a function of the normalized loading rate.........51 Figure 2.4: Computed force-extension curves..............................................................53 Figure 2.5: Time evolution of extent of nucleosome wrapping....................................55 Figure 2.6: The octamer center of mass as a function of time for BD simulations......59 Figure 2.7: Time evolution of the nucleosome during simulation................................61 Figure 2.8: Time evolution of the total energy..............................................................63 Figure 2.9: Representative force-extension plots..........................................................65 Figure 2.10: Comparison of the time evolution number of wrapped turns of DNA and octamer orientation for canonical and noncanonical nucleosomes............68 Figure 3.1: Dinucleosome array model and nucleosome and linker bead coordinate systems.......................................................................................................84 Figure 3.2: Schematic of the applied and induced twist from the MC simulations......85 Figure 3.3: Twist inversion............................................................................................91 Figure 3.4: Twist propagation simulation results..........................................................93 Figure 3.5: Effect of applied twist on the linker and nucleosome coordinate systems.95 Figure 3.6: Nucleosome flipping dynamics..................................................................97 Figure 3.7: Dinucleosome energy contributions.........................................................100 Figure 3.8: Total applied and induced twist................................................................101 vii LIST OF TABLES Table A.1: Physical parameters associated with the coarse-grained nucleosome and Brownian dynamics simulations...................................................................114 Table A.2: Physical parameters used in the Monte Carlo simulations........................115 viii ACKNOWLEDGMENTS I would like to thank Dr. G.Arya for being an inspiring scientific adviser and for his unresting enthusiasm. Its been a privilege to work under his guidance. All the members of Dr. G. Arya group, past and current, have been very supportive and helpful. The text of Chapter 2 is partly based on paper I. V. Dobrovolskaia and G. Arya “Dynamics of forced nucleosome unraveling and role of nonuniform histone-DNA interactions”, in press, Biophysical Journal, 2012. The text

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    127 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us