Accelerator Physics I / PHY-MV-BE-E09 Table of Contents

Accelerator Physics I / PHY-MV-BE-E09 Table of Contents

Accelerator Physics I / PHY-MV-BE-E09 Table of Contents: 1. Introduction __________________________________________________________________ 4 1.1. Literature ________________________________________________________________________ 4 1.2. Bending radius and beam rigidity _____________________________________________________ 6 2. Magnets _____________________________________________________________________ 9 2.1. General remarks on the calculation of magnetic fields ____________________________________ 9 2.2. Particle beam guidance ____________________________________________________________ 10 2.3. Particle beam focusing ____________________________________________________________ 12 2.4. Correction of chromatic errors ______________________________________________________ 17 2.5. Multipole expansion ______________________________________________________________ 19 2.6. Superconducting Magnets __________________________________________________________ 25 2.7. Effective field length ______________________________________________________________ 29 3. Linear Beam Optics ___________________________________________________________ 31 Transverse Linear Beam Dynamics W. Hillert page 1 Accelerator Physics I / PHY-MV-BE-E09 3.1. A quick and simple first approach using geometric optics ________________________________ 31 3.2. Some considerations concerning the equations of motion ________________________________ 36 3.3. Equations of motion in a moving reference system _____________________________________ 38 3.4. Matrix formalism _________________________________________________________________ 44 3.4.1. Drift space ____________________________________________________________________________45 3.4.2. Dipole magnets ________________________________________________________________________45 3.4.3. Quadrupole magnets ___________________________________________________________________48 3.4.4. Particle orbits in a system of magnets ______________________________________________________50 3.5. Particle beams and phase space _____________________________________________________ 52 3.3.1. Beam emittance _______________________________________________________________________52 3.5.2. Twiss parameters ______________________________________________________________________54 3.5.3. Beta functions _________________________________________________________________________57 3.5.4. Transformation in phase space ___________________________________________________________61 4. Circular Accelerators __________________________________________________________ 69 4.1. Weak focusing ___________________________________________________________________ 69 4.2. Strong focusing __________________________________________________________________ 72 4.2.1. Stability criterion ______________________________________________________________________74 4.3. Periodic focusing systems __________________________________________________________ 77 4.3.1. General FODO lattice ___________________________________________________________________77 4.3.2. Periodic beta functions _________________________________________________________________81 4.4. Transverse beam dynamics _________________________________________________________ 84 4.4.1. Closed orbit __________________________________________________________________________84 4.4.2. Betatron tune _________________________________________________________________________85 4.4.2. Filamentation _________________________________________________________________________86 Transverse Linear Beam Dynamics W. Hillert page 2 Accelerator Physics I / PHY-MV-BE-E09 4.4.3. Normalized coordinates _________________________________________________________________88 4.4.4. Closed orbit distortions _________________________________________________________________89 4.4.5. Gradient errors ________________________________________________________________________97 4.4.6. Optical resonances ___________________________________________________________________ 103 4.5. Beam dynamics with acceleration __________________________________________________ 107 5. Dynamics with Off Momentum Particles _________________________________________ 108 5.1 Dispersion and dispersion functions _________________________________________________ 108 5.2 Dispersion in circular accelerators ___________________________________________________ 111 5.3. Chromaticity ____________________________________________________________________ 114 5.4 Path length and momentum compaction _____________________________________________ 119 Transverse Linear Beam Dynamics W. Hillert page 3 Accelerator Physics I / PHY-MV-BE-E09 1. Introduction 1.1. Literature S.Y. Lee: Accelerator Physics, 3rd edition, World Scientific, New Yersey 2012, ISBN 978-981-4374-94-1 Bryant / Johnson: The Principles of Circular Accelerators and Storage Rings, Cambridge University Press, Cambridge 2005, ISBN 978-0-521-61969-1 Edwards / Syphers: An Introduction to the Physics of High Energy Accelerators, John Wiley & Sons, New York 1992, ISBN 978-0-471-55163-8 K. Wille: The physics of particle accelerators, Oxford Univ. Press 2005, Oxford, ISBN 0-19-850550-7 H- Wiedemann: Particle Accelerator Physics, 4th edition, Springer 2015, Berlin, ISBN 978-3-319-18316-9 Chao / Tigner: Handbook of Accelerator Physics and Engineering, 2nd edition, World Scientific, Singapore 2013, ISBN 987-4417-17-4 Transverse Linear Beam Dynamics W. Hillert page 4 Accelerator Physics I / PHY-MV-BE-E09 F. Hinterberger: Physik der Teilchenbeschleuniger und Ionenoptik, 2. Ausgabe, Springer 2008, Berlin, ISBN 978-3-540-75281-3 K. Wille: Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, 2. überarb. und erw. Ausgabe, Teubner 1996, Stuttgart, ISBN 978-3-519-13087-1 Rossbach / Schmüser: Basic Course on Accelerator Optics, CAS 5th general accelerator physics course CERN 94-01 Transverse Linear Beam Dynamics W. Hillert page 5 Accelerator Physics I / PHY-MV-BE-E09 1.2. Bending radius and beam rigidity Particle guidance and focusing based on beam deflection by Lorentz force F qEvB Ultra-relativistic particles move with speed very close to speed of light! Impact of magnetic fields is enhanced by enormous factor: vc B 1Tesla E 3 108 V /m Only magnetic fields are used for beam deflection! Bending radius from balance of forces mm r 0 : v2 Bv: m qvB pmvqB Leads to the definition of the magnetic rigidity B! In circular accelerators, the magnetic rigidity defines the momentum of the beam: p GeV Bp 1Tm 0.3 q c Transverse Linear Beam Dynamics W. Hillert page 6 Accelerator Physics I / PHY-MV-BE-E09 Example LHC: bending radius: = 2.8 km magnetic field: B = 8.3 Tesla Magnetic rigidity: B = 23.2⸱103 Tm → momentum: p[GeV/c] = 0.3⸱ B → kin. energy: E ≈ pc = 7 TeV Transverse Linear Beam Dynamics W. Hillert page 7 Accelerator Physics I / PHY-MV-BE-E09 Magnets Beam Guidance Beam Focusing Correction of Chromatic Errors Multipole expansion Transverse Linear Beam Dynamics W. Hillert page 8 Accelerator Physics I / PHY-MV-BE-E09 2. Magnets 2.1. General remarks on the calculation of magnetic fields Maxwell’s Equations: Hj (coils) H 0 (gap) → H !!! 0 nc Magnets: = const. defines the pole’s contour! Magn. Induction from BH 0 r Taylor Expansion of the Magnetic Field: BB2 B (x,)y By(0, )x yy (0, y )x2 (, 0 y ) y y xx2 Dipoles Quadrupoles Sextupoles Transverse Linear Beam Dynamics W. Hillert page 9 Accelerator Physics I / PHY-MV-BE-E09 2.2. Particle beam guidance Deflection of particles → homogenous field: BBe0 ˆy const. Corresponding magnetic potential: (,x y ) B0 y defining the pole’s profile to be flat and parallel: Dipole Magnets! parallel poles nI Hds H ds H , HH H H 0 E rE00 E gap yoke nI 1 qqnI B , Curvature: B 0 , m1 00h pph0 Transverse Linear Beam Dynamics W. Hillert page 10 Accelerator Physics I / PHY-MV-BE-E09 Dipole Magnets: Iron dominated: Superconducting: field determined by field determined by geometry of poles geometry of coils → 2 flat poles → j() ~ cos Transverse Linear Beam Dynamics W. Hillert page 11 Accelerator Physics I / PHY-MV-BE-E09 2.3. Particle beam focusing Restoring force, linearly increasing with increasing distance from the axis: B B B g x, B g y with g y x const . yx xy Corresponding potential: (,xy ) g x y, solves B 0 defining the pole’s profile to four hyperbolic poles: Quadrupole Magnets! y iron yoke coils hyperbolic poles a2 yx()0 at a distance ag2 from the axis. gx 2 x 0 Transverse Linear Beam Dynamics W. Hillert page 12 Accelerator Physics I / PHY-MV-BE-E09 The “restoring” force acting on the particles is F qBqvv g xeˆˆx yey A quadrupole magnet is therefore focusing only in one plane and defocusing in the other; depending on the sign of g. The g-parameter may be related to the current of the coils by evaluating the closed 12 01 loop integral n I H ds H ds H ds H ds H ds, 000E 01 20 y g One obtains with Hds rdr : 0 coil 2 nI g 0 , normalized: a2 Quadrupole Strength qqnI2 0 2 kg 2 , k m ppa Transverse Linear Beam Dynamics W. Hillert page 13 Accelerator Physics I / PHY-MV-BE-E09 The focal length of a thin quadrupole magnet of length L can be derived from the de- flection angle of the particles beam and its relation to the quadrupole strength k, x tan f Lqq tan LB gxLxkL Rppy 1 → Gives a better understanding of the quadrupole strength: kL f Here we have assumed the length L to be short compared to the focal length f such that R does not change significantly within the quadrupole magnetic field. Transverse Linear Beam Dynamics W. Hillert page 14 Accelerator

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    120 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us