Module 6: Two Dimensional Problems in Polar Coordinate System

Module 6: Two Dimensional Problems in Polar Coordinate System

Module6/Lesson1 Module 6: Two Dimensional Problems in Polar Coordinate System 6.1.1 INTRODUCTION n any elasticity problem the proper choice of the co-ordinate system is extremely I important since this choice establishes the complexity of the mathematical expressions employed to satisfy the field equations and the boundary conditions. In order to solve two dimensional elasticity problems by employing a polar co-ordinate reference frame, the equations of equilibrium, the definition of Airy’s Stress function, and one of the stress equations of compatibility must be established in terms of Polar Co-ordinates. 6.1.2 STRAIN-DISPLACEMENT RELATIONS Case 1: For Two Dimensional State of Stress Figure 6.1 Deformed element in two dimensions Consider the deformation of the infinitesimal element ABCD, denoting r and q displacements by u and v respectively. The general deformation experienced by an element may be 1 Applied Elasticity for Engineers T.G.Sitharam & L.GovindaRaju Module6/Lesson1 regarded as composed of (1) a change in the length of the sides, and (2) rotation of the sides as shown in the figure 6.1. Referring to the figure, it is observed that a displacement "u" of side AB results in both radial and tangential strain. ¶u Therefore, Radial strain = er = (6.1) ¶r and tangential strain due to displacement u per unit length of AB is (r + u)dq - rdq u (eq)u= = (6.2) rdq r Tangential strain due to displacement v is given by æ ¶v ö ç ÷dq è ¶q ø 1 ¶v (eq)v = = (6.3) rdq r ¶q Hence, the resultant strain is eq = (eq)u + (eq)v u 1 æ ¶v ö eq = + ç ÷ (6.4) r r è ¶q ø Similarly, the shearing strains can be calculated due to displacements u and v as below. Component of shearing strain due to u is æ ¶u ö ç ÷dq è ¶q ø 1 æ ¶u ö (g ) = = ç ÷ (6.5) rq u rdq r è ¶q ø Component of shearing strain due to v is ¶v æ v ö (grq)v = - ç ÷ (6.6) ¶r è r ø Therefore, the total shear strain is given by g rq = (g rq )u + (g rq )v 2 Applied Elasticity for Engineers T.G.Sitharam & L.GovindaRaju Module6/Lesson1 1 æ ¶u ö ¶v æ v ö grq = ç ÷ + - ç ÷ (6.7) r è ¶q ø ¶r è r ø Case 2: For Three -Dimensional State of Stress Figure 6.2 Deformed element in three dimensions The strain-displacement relations for the most general state of stress are given by ¶u 1 æ ¶v ö æ u ö ¶w er = , eq = ç ÷ + ç ÷, e z = ¶r r è ¶q ø è r ø ¶z ¶v 1 æ ¶u ö æ v ö grq = + ç ÷ - ç ÷ (6.8) ¶r r è ¶q ø è r ø 3 Applied Elasticity for Engineers T.G.Sitharam & L.GovindaRaju Module6/Lesson1 1 æ ¶w ö æ ¶v ö gqz = ç ÷ + ç ÷ r è ¶q ø è ¶z ø ¶u æ ¶w ö gzr = + ç ÷ ¶z è ¶r ø 6.1.3 COMPATIBILITY EQUATION We have from the strain displacement relations: ¶u Radial strain, e = (6.9a) r ¶r æ 1 ö ¶v æ u ö Tangential strain, eq = ç ÷ + ç ÷ (6.9b) è r ø ¶q è r ø ¶v æ v ö æ 1 ö ¶u and total shearing strain,g rq = - ç ÷ + ç ÷ (6.9c) ¶r è r ø è r ø ¶q Differentiating Equation (6.9a) with respect to q and Equation (6.9b) with respect to r, we get ¶e ¶ 2 u r = (6.9d) ¶q ¶r¶q ¶e æ 1 ö ¶u æ 1 ö 1 ¶ 2v æ 1 ö ¶v q = ç ÷ - ç ÷u + . - ç ÷. ¶r è r ø ¶r è r 2 ø r ¶r¶q è r 2 ø ¶q 2 e r æ 1 ö ¶ v 1 éu æ 1 ö ¶v ù = + ç ÷ - ê + ç ÷ ú r è r ø ¶r¶q r ë r è r ø ¶q û 2 ¶eq e r æ 1 ö ¶ v æ 1 ö \ = + ç ÷. - ç ÷eq (6.9e) ¶r r è r ø ¶r¶q è r ø Now, Differentiating Equation (6.9c) with respect to r and using Equation (6.9d), we get ¶g ¶ 2v æ 1 ö ¶v v æ 1 ö ¶ 2u æ 1 ö ¶u rq = - ç ÷ + + ç ÷ - ç ÷ ¶r ¶r 2 è r ø ¶r r 2 è r ø ¶r¶q è r 2 ø ¶q ¶ 2v 1 æ ¶v v 1 ¶u ö 1 ¶ 2u = - ç - + ÷ + ¶r 2 r è ¶r r r ¶q ø r ¶r¶q 2 ¶g rq ¶ v æ 1 ö æ 1 ö ¶e r \ = - ç ÷g rq + ç ÷ (6.9f) ¶r ¶r 2 è r ø è r ø ¶q Differentiating Equation (6.9e) with respect to r and Equation (6.9f) with respect to q , we get, 2 3 2 ¶ eq æ 1 ö ¶e r æ 1 ö æ 1 ö ¶ v æ 1 ö ¶ v æ 1 ö ¶eq 1 = ç ÷ - ç ÷e r + ç ÷ - ç ÷ - -ç ÷ + eq (6.9g) ¶r 2 è r ø ¶r è r 2 ø è r ø ¶r 2¶q è r 2 ø ¶r¶q è r ø ¶r r 2 4 Applied Elasticity for Engineers T.G.Sitharam & L.GovindaRaju Module6/Lesson1 ¶ 2g ¶3v æ 1 ö ¶g æ 1 ö ¶ 2e and rq = - ç ÷ rq + ç ÷ r ¶r¶q ¶r 2¶q è r ø ¶q è r ø ¶q 2 æ 1 ö ¶ 2g æ 1 ö ¶ 3v æ 1 ö ¶g æ 1 ö ¶ 2e or ç ÷ rq = ç ÷ - ç ÷ rq + ç ÷ r (6.9h) è r ø ¶r¶q è r ø ¶r 2¶q è r 2 ø ¶q è r 2 ø ¶q 2 Subtracting Equation (6.9h) from Equation (6.9g) and using Equation (6.9e), we get, ¶ 2e æ 1 ö ¶ 2g æ 1 ö ¶e æ e ö æ 1 ö ¶ 2v æ 1 ö ¶e æ 1 ö ¶g æ 1 ö ¶ 2e e q - ç ÷ rq = ç ÷ r - ç r ÷ - ç ÷ - ç ÷ q + ç ÷ rq - ç ÷ r + q ¶r 2 è r ø ¶r¶q è r ø ¶r è r 2 ø è r 2 ø ¶r¶q è r ø ¶r è r 2 ø ¶q è r 2 ø ¶q 2 r 2 1 æ ¶e ö 1 æ e 1 ¶ 2v e ö 1 æ ¶e 1 ¶g 1 ¶ 2e ö = r - ç r + - q ÷ - ç q - . rq + r ÷ ç ÷ ç ÷ ç 2 ÷ r è ¶r ø r è r r ¶r¶q r ø r è ¶r r ¶q r ¶q ø æ 1 ö ¶e æ 1 ö ¶e æ 1 ö ¶e æ 1 ö ¶g æ 1 ö ¶ 2e = ç ÷ r - ç ÷ q - ç ÷ q + ç ÷ rq - ç ÷ r è r ø ¶r è r ø ¶r è r ø ¶r è r 2 ø ¶q è r 2 ø ¶q 2 æ 1 ö ¶e æ 2 ö ¶e æ 1 ö ¶g æ 1 ö ¶ 2e = ç ÷ r - ç ÷ q + ç ÷ rq - ç ÷ r è r ø ¶r è r ø ¶r è r 2 ø ¶q è r 2 ø ¶q 2 æ 1 ö ¶g æ 1 ö ¶ 2g ¶ 2e æ 2 ö ¶e æ 1 ö ¶e æ 1 ö ¶ 2e \ç ÷ rq + ç ÷ rq = q + ç ÷ q - ç ÷ r + ç ÷ r è r 2 ø ¶q è r ø ¶r¶q ¶r 2 è r ø ¶r è r ø ¶r è r 2 ø ¶q 2 6.1.4 STRESS-STRAIN RELATIONS In terms of cylindrical coordinates, the stress-strain relations for 3-dimensional state of stress and strain are given by 1 er = [s -n (s + s )] E r q z 1 eq = [s -n (s + s )] (6.10) E q r z 1 ez = [s -n (s + s )] E z r q For two-dimensional state of stresses and strains, the above equations reduce to, For Plane Stress Case 1 er = (s -ns ) E r q 1 eq = (s -ns ) (6.11) E q r 1 grq = t G rq 5 Applied Elasticity for Engineers T.G.Sitharam & L.GovindaRaju Module6/Lesson1 For Plane Strain Case (1 +n ) er = [(1 -n )s - gs ] E r q (1 +n ) eq = [(1 -n )s - gs ] (6.12) E q r 1 grq = t G rq 6.1.5 AIRY’S STRESS FUNCTION With reference to the two-dimensional equations or stress transformation [Equations (2.12a) to (2.12c)], the relationship between the polar stress components s r ,s q and t rq and the Cartesian stress components s x ,s y and t xy can be obtained as below. 2 2 s r = s x cos q +s y sin q +t xy sin 2q 2 2 s q = s y cos q +s x sin q -t xy sin 2q (6.13) t rq = (s y -s x )sinq cosq +t xy cos 2q Now we have, ¶2f ¶ 2f ¶ 2f s = s = t = - (6.14) x ¶y 2 y ¶x 2 xy ¶x¶y Substituting (6.14) in (6.13), we get ¶ 2f ¶2f ¶2f s = cos2 q + sin2 q - sin 2q r ¶y 2 ¶x 2 ¶x¶y ¶ 2f ¶ 2f ¶ 2f s = cos 2 q + sin 2 q + sin 2q (6.15) q ¶x 2 ¶y 2 ¶x¶y æ ¶ 2f ¶ 2f ö ¶ 2f t = ç - ÷sinq cosq - cos 2q rq ç 2 2 ÷ è ¶x ¶y ø ¶x¶y The polar components of stress in terms of Airy’s stress functions are as follows.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us