Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Outline • NMOS inverter with resistor pull-up –The inverter • NMOS inverter with current-source pull-up • Complementary MOS (CMOS) inverter • Static analysis of CMOS inverter Reading Assignment: Howe and Sodini; Chapter 5, Section 5.4 6.012 Spring 2007 Lecture 12 1 1. NMOS inverter with resistor pull-up: Dynamics •CL pull-down limited by current through transistor – [shall study this issue in detail with CMOS] •CL pull-up limited by resistor (tPLH ≈ RCL) • Pull-up slowest VDD VDD R R VOUT: VOUT: HI LO LO HI V : VIN: IN C LO HI CL HI LO L pull-down pull-up 6.012 Spring 2007 Lecture 12 2 1. NMOS inverter with resistor pull-up: Inverter design issues Noise margins ↑⇒|Av| ↑⇒ •R ↑⇒|RCL| ↑⇒ slow switching •gm ↑⇒|W| ↑⇒ big transistor – (slow switching at input) Trade-off between speed and noise margin. During pull-up we need: • High current for fast switching • But also high incremental resistance for high noise margin. ⇒ use current source as pull-up 6.012 Spring 2007 Lecture 12 3 2. NMOS inverter with current-source pull-up I—V characteristics of current source: iSUP + 1 ISUP r i oc vSUP SUP _ vSUP Equivalent circuit models : iSUP + ISUP r r vSUP oc oc _ large-signal model small-signal model • High current throughout voltage range vSUP > 0 •iSUP = 0 for vSUP ≤ 0 •iSUP = ISUP + vSUP/ roc for vSUP > 0 • High small-signal resistance roc. 6.012 Spring 2007 Lecture 12 4 NMOS inverter with current-source pull-up Static Characteristics VDD iSUP VOUT VIN CL Inverter characteristics : iD = V 4 3 VIN VGS I + DD SUP roc 2 1 = vOUT vDS VDD (a) VOUT 1 2 3 4 VIN (b) High roc ⇒ high noise margins 6.012 Spring 2007 Lecture 12 5 PMOS as current-source pull-up I—V characteristics of PMOS: + S + VSG _ VSD G B − _ + IDp 5 V + D − V + G − V − D − ID(VSG,VSD) (a) = VSG 3.5 V 300 V = V + V = V − 1 V 250 (triode SD SG Tp SG region) V = 3 V 200 SG − IDp (µA) (saturation region) 150 = VSG 25 100 = 0, 0.5, VSG 1 V (cutoff region) V = 2 V 50 SG = VSG 1.5 V 12345 VSD (V) (b) Note: enhancement-mode PMOS has VTp <0. In saturation: 2 −IDp ∝(VSG + VTp ) 6.012 Spring 2007 Lecture 12 6 PMOS as current-source pull-up: Circuit and load-line diagram of inverter with PMOS current source pull-up: PMOS load line for V =V -V VDD SG DD B -IDp=IDn VDD VB VOUT VIN VIN CL 0 0 VDD VOUT Inverter characteristics: NMOS cutoff PMOS triode VOUT NMOS saturation PMOS triode VDD NMOS saturation PMOS saturation NMOS triode PMOS saturation 0 0 VTn VDD VIN 6.012 Spring 2007 Lecture 12 7 PMOS as current-source pull-up: NMOS inverter with current-source pull-up allows high noise margin with fast switching • High Incremental resistance • Constant charging current of load capacitance But… When VIN = VDD, there is a direct current path between supply and ground ⇒ power is consumed even if the inverter is idle. VDD PMOS load line for VSG=VDD-VB -IDp=IDn VDD VB VOUT:LO VIN VIN:HI CL 0 0 VDD VOUT Ideally, we would like to have a current source that is itself switchable, i.e it shuts off when input is high ⇒ CMOS! 6.012 Spring 2007 Lecture 12 8 3. Complementary MOS (CMOS) Inverter Circuit schematic: VDD VIN VOUT CL Basic Operation: •VIN = 0 ⇒ VOUT = VDD VGSn = 0 < VTn ⇒ NMOS OFF VSGp = VDD > - VTp ⇒ PMOS ON •VIN = VDD ⇒ VOUT = 0 VGSn = VDD > VTn ⇒ NMOS ON VSGp = 0 < - VTp ⇒ PMOS OFF No power consumption while idle in any logic state! 6.012 Spring 2007 Lecture 12 9 VOUT V 1 DD 2 CMOS Inverter (Contd.): 3 Output characteristics of both transistors: 4 5 VDD VIN = − − = IDn IDp IDp IDn VIN 3 3 4 2 4 2 5 1 5 1 VDD VOUT VDD VOUT n-channel p-channel (a) (b) Note: VIN = VGSn = VDD -VSGp ⇒ VSGp=VDD -VIN VOUT = VDSn = VDD -VSDp ⇒ VSDp=VDD -VOUT IDn = -IDp Combine into single diagram of ID vs. VOUT with VIN as parameter 6.012 Spring 2007 Lecture 12 10 CMOS Inverter (Contd.): ID VDD-VIN VIN 0 0 VOUT • No current while idle in any logic state Inverter Characteristics: NMOS cutoff PMOS triode VOUT NMOS saturation PMOS triode VDD NMOS saturation PMOS saturation NMOS triode PMOS saturation NMOS triode PMOS cutoff 0 0 V V +V V Tn DD Tp VDD IN • “rail-to-rail” logic: logic levels are 0 and VDD • High |Av| around logic threshold ⇒ good noise margins 6.012 Spring 2007 Lecture 12 11 2. CMOS inverter: noise margins VOUT NML VDD Av(VM) VM 0 0 V V V V IL M IH VDD IN NMH • Calculate VM • Calculate Av(VM) • Calculate NML and NMH Calculate VM (VM = VIN = VOUT) At VM both transistors are saturated: Wn 2 I Dn = µ nCox()VM − VTn 2Ln Wp 2 −IDp = µ pCox()VDD − VM + VTp 2Lp 6.012 Spring 2007 Lecture 12 12 CMOS inverter: noise margins (contd.) Define: Wn Wp kn = µnCox; kp = µpCox Ln Lp Since : I Dn = −IDp Then: 1 2 1 2 kn()VM − VTn = kp (VDD − VM + VTp ) 2 2 Solve for VM: k V + p V + V Tn k ()DD Tp V = n M k 1+ p kn Usually, VTn and VTp fixed and VTn = - VTp ⇒ VM engineered through kp/kn ratio. 6.012 Spring 2007 Lecture 12 13 CMOS inverter: noise margins (contd..) • Symmetric case: kn = kp V V = DD M 2 This implies: Wp Wp µ pCox µp k L L W W p =1 = p ≈ p ⇒ p ≈ 2 n k Wn Wn L L n µ nCox 2µ p p n Ln Ln Since usually Lp ≈ Ln = Lmin ⇒ Wp ≈ 2Wn Wn Wp • Asymmetric case: kn >> kp, or >> Ln Lp VM ≈ VTn NMOS turns on as soon as VIN goes above VTn. Wn Wp • Asymmetric case: kn << kp, or << Ln Lp VM ≈ VDD + VTp PMOS turns on as soon as VIN goes below VDD + VTp. 6.012 Spring 2007 Lecture 12 14 CMOS inverter: noise margins (contd…) Calculate Av(VM) • Small signal model: S2 + v =-v sg2 in gmpvsg2 rop - G2 D2 G1 D1 + + + vin vgs1 gmnvgs1 ron vout - - - S1 G1=G2 D1=D2 + + vin gmnvin gmpvin ron//rop vout - - S1=S2 Av =−()gmn + gmp (ron // rop ) This can be rather large. 6.012 Spring 2007 Lecture 12 15 CMOS inverter: calculate noise margins (contd.) VOUT NML VDD Av(VM) VM 0 0 V V V V IL M IH VDD IN NMH • Noise-margin low, NML: VDD − VM VIL = VM − Av VDD − VM NML = VIL − VOL = VIL = VM − A v • Noise-margin high, NMH: ⎛ 1 ⎞ ⎜ VIH = VM 1 + ⎟ ⎝ Av ⎠ ⎛ 1 ⎞ ⎜ NMH = VOH − VIH = VDD − VM 1+ ⎟ ⎝ Av ⎠ 6.012 Spring 2007 Lecture 12 16 What did we learn today? Summary of Key Concepts • In NMOS inverter with resistor pull-up, there is a trade-off between noise margin and speed • Trade-off resolved using current source pull-up – Use PMOS as current source. • In NMOS inverter with current-source pull-up: if VIN = High, there is power consumption even if inverter is idling. • Complementary MOS: NMOS and PMOS switch- on alternatively. – No current path between power supply and ground – No power consumption while idling • Calculation of CMOS –VM – Noise Margin 6.012 Spring 2007 Lecture 12 17.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    17 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us