Introduction to Waveguide Optics

Introduction to Waveguide Optics

2572-4 Winter College on Optics: Fundamentals of Photonics - Theory, Devices and Applications 10 - 21 February 2014 Introduction to Waveguide Optics Jiri Ctroky Institute of Photonics and Electronics AS CR, v.v.i., Prague Czech Republic IntroductiontoWaveguideOptics JiƎítyroký [email protected] Instituteof Photonics and Electronics AS CR, v.v.i., Prague,CzechRepublic WINTER COLLEGE on OPTICS: Fundamentals of Photonics - Theory,Devices and Applications, 10 - 21 February 2014, Trieste - Miramare, Italy WhereIcomefrom… InstituteofPhotonics andElectronicsASCR,v.v.i. AcademyofSciencesoftheCzechRepublicisanonͲuniversityinstitutionforbasicandappliedresearchconsistingof54independentinstitutes WINTER COLLEGE on OPTICS: Fundamentals of Photonics - Theory,Devices and Applications, 10 - 21 February 2014, Trieste - Miramare, Italy 1 Examplesofwaveguidestructures opticalfibre channeloptical “ARROW” waveguide (antiresonantreflectingOW) longitudinally uniform microring angularly plasmonicwaveguide resonator uniform metal subwavelengthgrating photoniccrystal waveguide waveguide “gain/loss”waveguide loss gain longitudinally periodic etc… WINTER COLLEGE on OPTICS: Fundamentals of Photonics - Theory,Devices and Applications, 10 - 21 February 2014, Trieste - Miramare, Italy Theoreticalfundamentalsofopticalwaveguides Tentativelistoftopics • Planarwaveguides;waveguidemodes,theirproperties.Guidedandleakymodes. Othertypesofwaveguiding,guidingbyasingleinterface • Waveguidebends,whisperingͲgallerymodes,circularresonators • Channelwaveguides,approximateanalyticalmethods. • Morecomplexwaveguidestructures.FundamentalsofarigorouscoupledͲmodetheory • Introductiontomodalmethods;transfermatrixmethod,basicsofthefilmmodematching • Periodicmedia,Blochmodes,originofthebandgap,SWGwaveguides,(photoniccrystals) • “Canonical”waveguidestructures:YͲjunctions,directionalcoupler,twoͲ andmultimode interferencecouplers,microresonators • Plasmonicwaveguidesandstructures.Surfaceplasmonsensing.HybriddielectricͲplasmonic slotwaveguide,plasmonicdevices • Waveguidestructureswithlossandgain;asymmetricgratingcouplers,(“PTͲsymmetric” waveguidestructures) • … Basicrequirements:Theoryofelectromagneticfield,Maxwellequations WINTER COLLEGE on OPTICS: Fundamentals of Photonics - Theory,Devices and Applications, 10 - 21 February 2014, Trieste - Miramare, Italy 2 Basicmath&physbackground Dielectric(possiblyalsometallic)nonͲmagneticlinearsourceͲfreemedium, timeͲharmonicdependenceofelectromagneticfield: (,)rErtit Re ()exp(Z ) E ^ ` uEH iZP0 ,0 D (,)rHrtit Re^` ()exp(Z ) 2 H uHEB inZH0 ,0 22 2S k ZPH DE H n2 000O 0 22 BH P0 kk 00H kn 1 kn (phase velocity) PlaneͲwavesolution: vcZ iikr kccc r k r EE 00eee E 1 dk ng (group velocity) iikr kccc r k r vdg Z c HH 00eee E dn()Z dn 2 nn Z group index kk cccini k, H cccH g ddZZ cccc222 dn kk k0 H complex nnO , typically larger than 2 wavevector dO 2kkccc k0 H cc WINTER COLLEGE on OPTICS: Fundamentals of Photonics - Theory,Devices and Applications, 10 - 21 February 2014, Trieste - Miramare, Italy Fieldattheinterfacebetweentwomedia Planewaveincidentonaplanarinterface iiiikrititiikrr kr kr krr kr EEii 000e, EE rr e, EE tt e, HH i i 0 e, H r H r 0 e, HH t t 0 e TEpolarization x k x E k E t TMpolarization t t EHH,, t n n yxz 2 H yxz,,EE 2 Ht H z z t nn E n 12 E r 1 k r n ki R E i R H 1 i H k i i r k Ei r r r Hi Hi 00 00222222 kxzkxzir,01 kN rJJJJ ir ,, t kNNnNn 02 t, 1 ir ,1 , t t 2 Fieldcontinuityconditionsat x 0: 0000 0 0 izkziiizkzrr iz kz iz kz iz kz r iz kz r Eeir000 Ee Ee t, He i 0 H r 0 e He t 0 NNNNn sinT 22 22 irt1 i JJ11 nN, 2 nN 2 WINTER COLLEGE on OPTICS: Fundamentals of Photonics - Theory,Devices and Applications, 10 - 21 February 2014, Trieste - Miramare, Italy 3 Fresnelcoefficients 22 TE Er J12 J TM Hnnr JJ11 2 2 R R 22 Ei JJ12 Hi JJ11nn 2 2 22 22 nN12 nN 22 2 22 2 nn21 N nn 1 2 N 22 22 nN12 nN 22 2 22 2 nn21 N nn 1 2 N criticalangle ) | TM TM totalreflection R ( R | , | , arg TE ) R | TE R arg( “regionofinterest” ofwaveguideoptics Brewster angle Angle of incidence (deg) Angle of incidence (deg) TM TM i ) TE Re ; TE i ) Re ; 2 ªº22 22 TM §·nNn12 N n ) 2arctan«»¨¸ . )TE 2arctan2 . «»n nN22 22 ¬¼©¹2 1 nN1 WINTER COLLEGE on OPTICS: Fundamentals of Photonics - Theory,Devices and Applications, 10 - 21 February 2014, Trieste - Miramare, Italy Thesimplestwaveguide:two(perfect)conductors x R kxzr kN(),rJ 00 d 0 k E k RTE yref, 1 0 z E y R yinc, perfectconductors Twoequivalentphysicalpictures: TM H yref, R 1 1.aseriesofsuccessivereflectionsofaplanewave H yinc, 2.twoplanewavespropagatingupwardsanddownwards Inbothcases,the“nonzerowave”inthewaveguidecanexistonlyunder the“conditionoftransverseresonance” (forTMonly) 2 Rikdexp(200JJS ) 1, or 2 kdmm 2 , 0, 1, 2, ! Wavescanthuspropagateonlyasdiscretewaveguidemodes withpropagationconstants EETE TM kN22 k 2 k 22 J k 2 m S d2 …polarizationdegeneracy mm00 m m (exceptform =0) for md! 2O …evanescentmodes ExzEym(,) 0 sin mxdSE exp( i z ) Thetransversefielddistributionshavetheforms H ym(,)xz H0 cos mSE xd exp( i z ) WINTER COLLEGE on OPTICS: Fundamentals of Photonics - Theory,Devices and Applications, 10 - 21 February 2014, Trieste - Miramare, Italy 4 Dielectric slab waveguide x nnncswdd Total reflection at both interfaces: nNnwcs!!, 22 22 nc JJw nN w, cs,, iNn cs R c d Condition of transverse resonance: nw z 0 R RRexp(2 ikJ d ) 1, or ns s cs0 w 11 )()Nkd J arg R arg R S m tot0 w22 s c ªºªºQQ22 22 22 §·nNnwms §· nNn wmC ­ 0 (TE) kd0 nwm N arctan«»«»¨¸ arctan ¨¸ mS , Q ® «»«»nnnN22 nN 22 2 (TM) ¬¼¬¼©¹scwm ©¹ wm ¯ TE TM Dispersion equation for Nm shows polarization birefringence, NNmm! WINTER COLLEGE on OPTICS: Fundamentals of Photonics - Theory,Devices and Applications, 10 - 21 February 2014, Trieste - Miramare, Italy Effectivethickness&“periodofpropagation” x Total internal reflection is linked up ddR) 1(arg) LGHa LGH with the Goos-Hänchen shift, dkdNE 0 k0 J a ªºNn22 TE 22dN«»sc, d LGHs,c arctan , kdN«»22 22 2 2 z d 0 nNw kNn() nN 0 eff ¬¼0,csw L k J ªº2 Nn22 GHs 0 s TM 2 d «»nw sc, LGHs,c arctan 222 kdN0 «»nnN Lp ¬¼sc, w 2N nn22() n 2 n 2 wsc,, w sc . 22 2 2nn42 N 2 nNn 422 kNn0, sc nN w s,,cw w sc TE ddkeff 0 J s J c (and a similar, somewhat more complicated expression for TM) – effective thickness d)tot 2 dk 0J w d N Lp LLGSs GSc 2 d LL GSs GSc … “period of propagation” dkdNE 22 0 nNw These “ray-optic concepts” are useful also for inherently “wave-optic” phenomenon of optical waveguiding. WINTER COLLEGE on OPTICS: Fundamentals of Photonics - Theory,Devices and Applications, 10 - 21 February 2014, Trieste - Miramare, Italy 5 Dispersion diagram (examples) Asymmetricwaveguide 1,60 TE0 nn 11.51.6 n TM cs w 1,58 0 All modes exhibit cut-off 1 1,56 2 3 eff 4 N 1,54 5 6 1.60 7 1,52 TE 8 0 TM 9 1.58 0 10 1 1,50 2 0246810 eff 1.56 3 N 4 d/O 1.54 5 6 7 Symmetric waveguide 1.52 8 9 nncs15.. n w 16 10 1.50 Number of TE and TM modes identical, 0246810 TE and TM always exist d/O 0 0 WINTER COLLEGE on OPTICS: Fundamentals of Photonics - Theory,Devices and Applications, 10 - 21 February 2014, Trieste - Miramare, Italy Distributionofmodesofaslabwaveguide TE guiding layer 0.2 0 TE 1 TE 2 0.1 TE 3 TE 4 0.0 substrate cover Mode field amplitude -0.1 n = 1,5 n = 1,0 s c -0.2 n = 1,6 w -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 x coordinate (μm) WINTER COLLEGE on OPTICS: Fundamentals of Photonics - Theory,Devices and Applications, 10 - 21 February 2014, Trieste - Miramare, Italy 6 Electromagnetic theory of a slab waveguide w Planarwaveguideasastructurewith1Dpermittivtydistribution:H ();x { 0 wy 1.TEpolarization: EHHyxz,, 2.TMpolarization: H yxz,,EE izE Eigenmodefield: ExzExyy(,) ()e , etc. i dE() x i dHy () x Hx() y , Ex() , z z 2 dx ZP0 dx ZH0nx() E E Hxxy() Ex (), Exxy() 2 Hx (), ZP0 ZH0nx() dH() x dE() x z iHEZH() x i n2 () xEx () z iEEZP() x i H () x dx xy0 dx xy0 ­½d 2 ­½ddªº1 kn22 x E x E 2 E x °°2222 ®¾2 0 yy ®¾nx «»2 knxHx0 ()yy E Hx () ¯¿dx ¯¿°°dx¬¼«»nx dx 2 EigenvalueequationsforeigenfunctionsExyy() or Hx()andeigenvaluesE WINTER COLLEGE on OPTICS: Fundamentals of Photonics - Theory,Devices and Applications, 10 - 21 February 2014, Trieste - Miramare, Italy Analogybetweenaplanarwaveguide andapotentialwellinquantummechanics FieldequationforaTEmode Schrödingerequationforaparticle inaplanarwaveguide inapotentialwell 2 22 1()dEy 22 = dx\ 22nxE()yy NE 2 Vx()\\ () x W () x kdx0 2m dx Ex() \ ()x y Thereisnotsuchanexactanalogy 2m forTMpolarization,butitsbehaviour k isverysimilar nx2 () 0 = 2 2 nx() Vx() Vx() N0 guidedmodes 2 N 2 W x N1 substratemode freeparticle reflectionfrom radiationmode thepotentialbarrier W x 1 boundstates W0 WINTER COLLEGE on OPTICS: Fundamentals of Photonics - Theory,Devices and Applications, 10 - 21 February 2014, Trieste - Miramare, Italy 7 Guidingofopticalradiationinadielectric waveguide x guided substrate superstrate mode mode mode nc nc nx() 0 nw nw guidedmode ns ns “substrate”mode Guidedmodes: kn00csd knE kn 0 g radiationmode Radiation (substrate) modes: kn000csgE kn kn Radiationmodes(superstrate): E dkn000csg kn kn WINTER COLLEGE on OPTICS: Fundamentals of Photonics - Theory,Devices and Applications, 10 - 21 February 2014, Trieste - Miramare, Italy Orthogonality of eigenmodes Itcanbeshownthatfieldsofguidedmodes (fromthediscretespectrum) areorthogonal, 1 f E EHz()x u ()xdx0 m GE , kN. 2 ³ mnE mnmm0 f m Forradiationandevanescentmodes,theorthogonalityconditionsounds f 1 E (inthesense EH(,xxdxEE )u (,cc ) z0 G (EE ) 2 ³ n E oftheprincipalvalue f oftheintegral) Radiationandevanescentmodes arealwaysorthogonal todiscreteguidedmodes: 1 f EHz(,xxdxE )u ()0 0, 2 ³ n f Forlosslesswaveguides,

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    49 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us