1. Protists A. Algae

1. Protists A. Algae

Chapter 12 – EUKARYOTES: Protists, Fungi & Helminths 1. Protists • Algae • Protozoa 2. Fungi 3. Helminths 1. Protists A. Algae B. Protozoa A. Algae 1 Overview of the Algae Characteristics of algae: • unicellular or multicellular eukaryotes • almost all are photoautotrophs (photosynthetic) • all are essentially aquatic (live in fresh or saltwater) • all are capable of asexual reproduction • some are capable of sexual reproduction as well Algal phyla we will consider: Phaeophytes (brown algae) Diatoms Rhodophytes (red algae) Dinoflagellates Chlorophytes (green algae) Water Molds **produce an estimated 80% of O2 in the atmosphere!** Brown Algae (Phaeophyta) • macroscopic seaweeds referred to as “kelp” • largest members of the Kingdom Protista • can grow 20 cm/day • contain distinct vegetative structures • holdfast anchors kelp to surface • stemlike stipes • leaflike blades • pneumatocysts provide buoyancy Red Algae (Rhodophyta) • macroscopic seaweeds that lives in deep water where only blue light penetrates • source of “agar” (used in culture plates) • source of “carageenan” (thickening agent in foods) 2 Green Algae (Chlorophyta) • most are microscopic (uni- & multicellular), some are macroscopic • believed to have given rise to the plants Diatoms • unicellular or filamentous (form multicellular filaments) • have a unique cell wall structure composed of a carbohydrate called pectin & silica • responsible for geometric, glass-like appearance • widely distributed throughout photic zone • important part of aquatic food webs Dinoflagellates • what are commonly referred to as “plankton” • unicellular algae with 2 perpendicular flagella • some produce potent neurotoxins • source of toxic algal blooms (e.g., “red tide”) • important part of the oceanic food web 3 Water Molds (Oomycota) • have a “fungus-like” appearance but are protists • cell walls made of cellulose (not chitin) • spores have flagella (fungal cells never have flagella) • most water molds are decomposers • play an important role in recycling nutrients B. Protozoa Overview of the Protozoa Characteristics of protozoa: • all are unicellular eukaryotes lacking a cell wall • all are heterotrophs (a few can be photosynthetic) • capable of asexual reproduction (some sexual repr.) • parasitic species have complex life cycles • some form protective cysts (when times are bad) Protozoan phyla we will consider: Archaeozoa Ciliophora Microspora Euglenozoa Apicomplexa Amoebozoa 4 Archaezoa • do NOT have mitochondria • have an analogous organelle called a mitosome • most have multiple flagella • several parasitic genera can cause human disease • Trichomonas, Giardia Apicomplexa • non-motile obligate intracellular parasites • have a unique “apical complex” of fibers and vacuoles that release digestive enzymes • aid in penetration of host animal tissue • includes species of Plasmodium responsible for the disease malaria • e.g., P. vivax & P. falciparum Plasmodium vivax Life Cycle (malaria) 5 Ciliophora (“ciliates”) • all have many small projections called cilia • used for locomotion & to direct food into the • have contractile vacuole cytostome (“mouth”) to expel excess water taken in by osmosis • some have multiple nuclei (expelled by exocytosis) Sexual Reproduction in Ciliates Most ciliates are capable of sexual reproduction by a process called conjugation: • conjugating Paramecia ea produce 4 haploid micronuclei by meiosis, 3 of which disintegrate • remaining micronucleus divides by mitosis (2) • exchange of 1 micronucleus between cells • “old” & “new” micronuclei fuse, divide by mitosis, one of which replaces conjugating Paramecia original micronucleus Euglenozoa • some are photosynthetic (Euglena) • have a light-sensitive eyespot & a single flagellum • includes the hemoflagellates (Trypanosoma) • responsible for “sleeping sickness” & Chagas disease 6 Amoebozoa • aka “amoebas” • have distinct form of locomotion called “amoeboid movement” • extend cytoplasmic projections called pseudopods • also used to engulf and ingest food by phagocytosis Slime Molds • have characteristics of both amoeba & fungi but but are not true fungi • slime molds are split into 2 groups: Cellular Slime Molds • form large aggregates under unfavorable conditions • are considered part of the phylum Amoebozoa Plasmodial Slime Molds • only exist in large multinuclear aggregates • are classified in their own phylum Cellular Slime Mold Life Cycle in unfavorable conditions 7 2. Fungi Overview of the Fungi General characteristics of fungi: • all are eukaryotic absorptive heterotrophs • unicellular (yeasts) or multicellular (molds, club fungi) • capable of asexual & sexual reproduction • have cell walls that contain chitin • aerobes w/some being facultative anaerobes • vast majority are terrestrial (i.e., live on land) • all fungi develop from haploid spores (no embryos) • do NOT have flagella (spores are immotile) **study of fungi is known as mycology ** Structure of Multicellular Fungi The thallus (“body”) of a fungus consists largely of filamentous chains of cells called hyphae: • vegetative (non-reproductive) or aerial (reproductive) • some have septa (septate), some don’t (coenocytic) 8 Hyphae form a Mycelium On a rich source of nutrients, many hyphae can be produced to form a continuous mass called a mycelium. • vegetative hyphae spread across food source & “absorb” • aerial hyphae grow vertically & produce spores in a number of different ways, depending on the fungus Reproduction in Filamentous Fungi Can reproduce asexually by fragmentation: • hyphae fragments grow by mitosis Produce spores asexually or sexually: Asexual spore production • occurs at the tip of aerial hyphae • derived from single parent fungus • produced by mitosis Sexual spore production • involves a partner of opposite mating type, meiosis Asexual Spores 2 types of asexual spores: 1) those not enclosed in a sac are conidiospores (aka conidia) • produced at the end of an aerial hypha called a conidiophore 9 2) sporangiospores are produced within an enclosed sac called a sporangium • forms at the end of hypha called a sporangiophore Sexual Spores Sexual spores in fungi require 3 phases not seen in the production of asexual spores: 1) transfer of a haploid nucleus to a cell of the opposite mating type: plasmogamy 2) fusion of the haploid nuclei to form a diploid zygote nucleus: karyogamy • haploid nuclei may reproduce by mitosis before fusing • this is the ONLY occasion when fungal cells are diploid 3) meiosis to produce haploid sexual spores The 3 Fungal Phyla Zygomycota • conjugation fungi (molds) Basidiomycota • club fungi (mushrooms, smuts, rusts, puffballs) Ascomycota • sac fungi (yeasts, molds, truffles, lichens) 10 Zygomycota • molds with coenocytic hyphae (no septa) • saprophytic (feed on dead vegetation) • produce spores in sporangia Zygomycote Sexual Reproduction • plasmogamy occurs via conjugation • results in zygospore which grows a sporangium **all 3 phyla conjugate, not just “conjugating fungi”** Basidiomycota • commonly called the “club fungi” due to the presence of microscopic, club-shaped basidia: • reproductive structures that produce basidiospores • some are parasitic • many have mutualistic symbioses with various plant species 11 Basidiomycote Life Cycle • sexual reproduction via conjugation produces a basidioma: • tightly packed aerial hyphae that make up the “fruiting body” (e.g., mushroom) • basidia form on the “gills” and produce spores by meiosis Ascomycota • produce sexual ascospores in a sac-like ascus • produce asexual conidia • includes molds with septate hyphae, yeasts lichens Ascomycote Sexual Reproduction • conjugation between opposite mating types results in the formation of an ascus followed by karyogamy & meiosis (sometimes followed by mitosis) • resulting 4 or 8 ascospores released when ascus opens 12 Budding Yeasts Spherical unicellular fungi. • reproduce asexually by budding • also reproduce sexually • facultative anaerobes (used for beer, wine…) • important in biological research • studying the cell cycle • production of insulin & Saccharomyces cerevisiae other important things Fission Yeasts Oval or rod-shaped unicellular fungi. • reproduce asexually by fission • also reproduce sexually • facultative anaerobes • biological research • also very important for studying the cell cycle Schizosaccharomyces pombe Lichens Lichens are actually 2 different organisms in a mutualistic symbiosis: • cyanobacteria or green algae living among the hyphae of an ascomycote (or basidiomycote) • fungus gets free carbs! • algae or cyanobacteria protected from elements • important pioneers • can grow on inorganic surfaces, begin succession 13 Lichen Structure Fungal hyphae form the following structures: • protective cortex • inner medulla where algae grow • rhizines to attach to growth surface 3. Helminths Overview of the Helminths Helminths are parasitic worms found in 2 animal phyla, the Platyhelminthes (flatworms) and the Nematodes (roundworms). • multicellular eukaryotic heterotrophs • have complex life cycles frequently involving multiple hosts • contain distinct organ systems • some may be reduced or absent due to dependence on host (e.g., no digestive system, no locomotion) 14 Platyhelminthes (flatworms): • typically hermaphroditic (monoecious) • have a proctostome (single opening, no anus) • we will look at 2 classes: Trematodes (flukes) & Cestodes (tapeworms) Nematodes (roundworms): • typically dioecious (2 sexes) • have complete digestive system (mouth & anus) • we will look at 2 types: pinworms & hookworms Trematodes

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    17 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us