Gene 579 (2016) 95–132 Contents lists available at ScienceDirect Gene journal homepage: www.elsevier.com/locate/gene Gene wiki review Epithelial sodium channel (ENaC) family: Phylogeny, structure–function, tissue distribution, and associated inherited diseases Israel Hanukoglu a,⁎, Aaron Hanukoglu b,c a Laboratory of Cell Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel b Division of Pediatric Endocrinology, E. Wolfson Medical Center, Holon, Israel c Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel article info abstract Article history: The epithelial sodium channel (ENaC) is composed of three homologous subunits and allows the flow of Na+ ions Received 7 September 2015 across high resistance epithelia, maintaining body salt and water homeostasis. ENaC dependent reabsorption of Received in revised form 20 December 2015 Na+ in the kidney tubules regulates extracellular fluid (ECF) volume and blood pressure by modulating osmolar- Accepted 22 December 2015 ity. In multi-ciliated cells, ENaC is located in cilia and plays an essential role in the regulation of epithelial surface Available online 7 January 2016 liquid volume necessary for cilial transport of mucus and gametes in the respiratory and reproductive tracts respectively. Keywords: Ion channels The subunits that form ENaC (named as alpha, beta, gamma and delta, encoded by genes SCNN1A, SCNN1B, Epithelia SCNN1G, and SCNN1D) are members of the ENaC/Degenerin superfamily. The earliest appearance of ENaC Evolution orthologs is in the genomes of the most ancient vertebrate taxon, Cyclostomata (jawless vertebrates) including Transmembrane proteins lampreys, followed by earliest representatives of Gnathostomata (jawed vertebrates) including cartilaginous Kidney sharks. Among Euteleostomi (bony vertebrates), Actinopterygii (ray finned-fishes) branch has lost ENaC genes. – – Renin angiotensin aldosterone system Yet, most animals in the Sarcopterygii (lobe-finned fish) branch including Tetrapoda, amphibians and amniotes (lizards, crocodiles, birds, and mammals), have four ENaC paralogs. We compared the sequences of ENaC orthologs from 20 species and established criteria for the identification of ENaC orthologs and paralogs, and their distinction from other members of the ENaC/Degenerin superfamily, especially ASIC family. Differences be- tween ENaCs and ASICs are summarized in view of their physiological functions and tissue distributions. Struc- tural motifs that are conserved throughout vertebrate ENaCs are highlighted. We also present a comparative overview of the genotype–phenotype relationships in inherited diseases associated with ENaC mutations, includ- ing multisystem pseudohypoaldosteronism (PHA1B), Liddle syndrome, cystic fibrosis-like disease and essential hypertension. © 2015 Elsevier B.V. All rights reserved. Contents 1. Introduction............................................................... 96 2. NomenclatureofENaChomologs...................................................... 97 2.1. Definitions:homolog,paralog,ortholog............................................... 97 2.2. ENaCparalogs........................................................... 97 2.3. ASICsandotherhomologs..................................................... 98 3. Chromosomal location and intron–exonorganizationofENaCgenes...................................... 98 4. AssemblyofENaCwithparalogs..................................................... 100 4.1. Trimericstructureandchannelpore................................................ 100 5. HomologybetweenENaCandASICparalogs................................................ 102 5.1. SitesofdivergenceamongENaCandASICparalogs......................................... 103 6. PhylogeneticdistributionofENaCorthologs................................................ 105 6.1. Cyclostomata and Chondrichthyes (cartilaginous fishes)....................................... 105 6.2. Euteleostomi(bonyvertebrates).................................................. 106 Abbreviations: ASIC, acid-sensing ion channel; ASL, airway surface liquid; CF, cystic fibrosis; CFTR, cystic fibrosis transmembrane conductance regulator; ENaC, epithelial sodium channel; ECF, extracellular fluid; ICF, intracellular fluid; PHA, pseudohypoaldosteronism; PRA, plasma renin activity; TM, transmembrane; TRCs, taste receptor cells. ⁎ Corresponding author at: Laboratory of Cell Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel. E-mail address: [email protected] (I. Hanukoglu). http://dx.doi.org/10.1016/j.gene.2015.12.061 0378-1119/© 2015 Elsevier B.V. All rights reserved. 96 I. Hanukoglu, A. Hanukoglu / Gene 579 (2016) 95–132 6.3. Amphibia............................................................ 106 6.4. Sauropsida............................................................ 106 6.5. Mammalia............................................................ 106 6.6. SummaryforTetrapoda...................................................... 106 7. Homologsininvertebrates........................................................ 106 8. HomologybetweenENaCorthologs.................................................... 108 8.1. Insertionsanddeletionsinorthologs................................................ 110 9. IdentifyingENaCfamilymemberswithintheENaC/Degenerinsuperfamily.................................. 110 9.1. Thresholdfororthologs...................................................... 111 9.2. Thresholdforparalogs...................................................... 111 10. PedigreeofENaCfamilymembers.................................................... 111 11. Conservedsequencemotifsandtheirfunctions.............................................. 111 11.1. Cytoplasmicaminoterminus................................................... 111 11.2. TM1.............................................................. 112 11.3. Extracellularregion....................................................... 114 11.3.1. Proteasecleavagesites.................................................. 114 11.3.2. Disulfidebonds..................................................... 114 11.3.3. SitesofN-linkedglycosylation.............................................. 114 11.3.4. Knuckledomain..................................................... 114 11.3.5. Palmdomain...................................................... 117 11.4. TM2.............................................................. 117 11.5. Carboxyterminus........................................................ 117 11.5.1. Motifsinvolvedinsignaltransduction........................................... 117 11.5.2. Interactionwithcytoskeletalelements.......................................... 117 11.5.3. PYmotif........................................................ 118 12. TissuedistributionofENaC....................................................... 118 12.1. Alpha,betaandgammasubunitsofENaC............................................. 118 12.2. DeltasubunitofENaC...................................................... 119 12.3. ASICs.............................................................. 119 13. Subcellularandciliallocalization.................................................... 119 13.1. ENaConcilia.......................................................... 119 14. FunctionaldifferencesbetweenENaCandASIC.............................................. 121 15. DiseasesassociatedwithENaCmutations................................................. 121 15.1. Multi-systempseudohypoaldosteronismtype1(PHA1B)...................................... 121 15.1.1. Clinicalpresentation................................................... 121 15.1.2. Genotype–phenotyperelationships............................................ 121 15.2. Liddlesyndrome........................................................ 122 15.3. Cystic fibrosis-likedisease.................................................... 123 15.4. Hypertension.......................................................... 124 Acknowledgments.............................................................. 125 References.................................................................. 125 1. Introduction generally in an isoosmotic environment as in the small intestine and proximal kidney tubules and are highly permeable to water. In contrast As it is well known, 60–70% of the human body weight is water. to leaky epithelia, the cells in tight epithelia are connected by complex About 2/3 of this water is within the cells (intracellular fluid, ICF) and tight junctions that reduce the permeability of the epithelia (Capaldo the remaining 1/3 fills the extracellular spaces and the vascular bed in et al., 2014; Reddy and Stutts, 2013). the circulatory system (extracellular fluid, ECF) (Ruth and Wassner, The epithelial sodium channel (ENaC), that is the focus of this 2006). The cell membrane, as a semi-permeable barrier, is permeable review, is located mostly in tight or high-resistance epithelia. As a con- to water molecules. Yet, the net movement of water between ECF and stitutively active channel, ENaC allows the flow of Na+ ions from the ICF depends on the relative osmolarity of these compartments and the lumen into the epithelial cell, across the apical cell membrane (Garty permeability of the membranes (Fischbarg, 2010). In most vertebrates, and Palmer, 1997; Kashlan and Kleyman, 2011; Kellenberger and the osmolarity of both the ECF and ICF is determined mainly by the con- Schild, 2015)(Fig. 1). The absorbed Na+ ions are then pumped out of centration of electrolytes (dissolved salt ions
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages38 Page
-
File Size-