Extra-terrestrial Nuclear Power Stations: Transportation and Operation i MASSACHUSETTSIN--E- i by i OF TECHNOLOGY I Susan Christine Kane MAR 2 8 2006 B.S. Engineering Physics and Nuclear Engineering LIBRARIES Rensselaer Polytechnic Institute, 2004 ! ._ Submitted to the Department of Nuclear Science and Engineering ARCHIVES in Partial Fulfillment of the Requirements for the Degree of Master of Science in Nuclear Science and Engineering at the Massachusetts Institute of Technology August 2005&2ef 005 ©C2005 Massachusetts Institute of Technology All rights reserved A/ Cen Signature of Author Department of Nuclear Science and'Engineering 20,2005 \\ \ \\ ANK~~\\IN~~ \\\\\' K~~ \~ \ x August Certifiedby:.. by.... -- -- -, N - - -.. 2A.5 Jeffre A.Hoffman J Professor of --the Practice-- of--- Aeronautics----- -- and Astronautics Thesis Supervisor Certified...........by: , ................-Ad.---...............', ------ Andrew C. Kadak Professor of the Practice of Nuclear Science and Engineering Thesis Reader J A -'^ Acceptedby:..............................-. -c- '1".~~ ~Jeffery A. Coderre Chairman, Department Committee on Graduate Studies (This page left intentionally blank) Extra-terrestrial Nuclear Power Stations: Transportation and Operation by Susan Christine Kane Submitted to the Department of Nuclear Science and Engineering on August 19, 2005 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Nuclear Science and Engineering ABSTRACT Many challenges exist when considering nuclear power to provide electricity for bases on the Moon or Mars, including launch safety, landing safety, deployment, control, and protecting the astronauts from radiation. Examples from the past provide guidance in these areas but surface operations on another body have never been attempted and rarely studied. This thesis discusses the risks and design considerations for launching, transporting, landing. and operating a nuclear fission reactor on the Moon or Mars. A reference mission and reactor were chosen to facilitate analysis in these areas. Launching a reactor involves meeting environmental and federal regulations. This includes an extensive safety analysis of launch to determine if launch accidents pose a serious risk to the public due to fuel release or inadvertent criticality. The reactor must also be able to survive the launch conditions without damage. Transport mainly involves protecting the reactor from damage from meteoroids. The reactor will then land through propulsive means on the Moon or Mars. Landing a reactor will also require a safety analysis to determine the consequences of a landing accident on the Moon or Mars. On the surface, the reactor must be at a location far enough away from the astronauts to limit radiation exposure to the astronauts from the reactor. Interaction from ground control and astronauts will be necessary to initiate startup, shutdown, and to change the power level of the reactor; however, startup and operation of the reactor must be autonomous due to the communications time lag between Earth and the Moon or Mars. These are significant challenges but all are feasible given the technology and experience in nuclear engineering and astronautics that exits today. Thesis Supervisor: Jeffrey Hoffman Title: Professor of the Practice, Aeronautics and Astronautics Thesis Reader: Andrew Kadak Title: Professor of the Practice. Nuclear Science and Engineering 3 (This page left intentionally blank) Table of Contents I. Introduction ...........................................................................................................................................9 1.1 The Case for Nuclear Power ...................................................................................................... 10 1.2 Past Uses of N uclear Power in Space ........................................................................................ 15 2. Reference M ission and Design ........................................................................................................... 20 2.1 Reference M ission ..................................................................................................................... 20 2.2 M IT M ars Surface Reactor ........................................................................................................ 22 3. Nuclear Launch Requirem ents ............................................................................................................ 25 3.1 Environm ental Regulations .............................................. 5.........................................................5 3.1.1 Review of Cassini EIS .......................................................................................................... 26 3.2 Nuclear Launch Safety Approval Procedure ............................................................................. 42 3.2.1 Review of Cassini Final Safety Analysis Report .................................................................. 46 3.2.2 Review of Cassini Final Safety Evaluation Report ............................................................... 62 3.3 Comparison of RTGs to Nuclear Reactors ................................................................................ 65 3.4 Conclusions ............................................................................................................................... 68 3.5 Suggested Changed to Reference Design .................................................................................. 69 4. Transportation ..................................................................................................................................... 70 4.1 Transport Between Earth and the Moon or Mars ...................................................................... 70 4.1.1 Design Considerations .......................................................................................................... 71 4.1.2 Suggested Changes to Reference Design .............................................................................. 71 5. Landing on Moon or Mars .................................................................................................................. 72 5.1.1 M ethod .................................................................................................................................. 72 5.1.2 Issues ..................................................................................................................................... 73 5.1.3 Suggested Changes to Reference Design .............................................................................. 76 6. Surface Operations .............................................................................................................................. 78 6.1 Deploym ent ............................................................................................................................... 78 6.2 Impact on Base Design .............................................................................................................. 80 6.3 Startup ........................................................................................................................................ 82 6.3.1 Exam ples of Reactor Startup Procedures .............................................................................. 83 6.3.2 H eat Pipe Startup ................................................................................................................... 86 6.3.3 Proposed Startup Procedure for Reference Design ............................................................... 91 6.4 Control ....................................................................................................................................... 98 6.5 Radiation Protection ................................................................................................................ 100 6.6 Suggested Changes to Reference Design ................................................................................ 107 7. Conclusions ....................................................................................................................................... 108 8. References......................................................................................................................................... 111 Appendix A: Power M odels ...................................................................................................................... 116 Appendix B: Pilgrim Preoperational and Startup Procedures...................................................................129 5 List of Figures Figure 1-1: Comparison of Power System Mass on Martian Equator on Clear Day .................................. 12 Figure 1-2: Power System Mass Comparison on Martian Equator during Martian Dust Storm ................ 13 Figure 1-3: Successfully Launched Space Nuclear Power Systems Launched by U.S.A. as of 1996 ........ 16 Figure 1-4: Diagram of the SNAP- I OA............................................................................ 1..........................7 Figure 2-1: Diagram of Architecture 969, the Reference Mission .............................................................. 22 Figure 2-2: Top-down View of the Martian Surface Reactor ..................................................................... 23 Figure 2-3: Cut-away View of the Martian Surface Reactor ...................................................................... 24 Figure 3-1: Diagram of the GPHS-RTG Assembly ...................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages134 Page
-
File Size-