Tropane alkaloid biosynthesis in Erythroxylum coca involves an atypical type III polyketide synthase by Neill Kim, B.A. A Dissertation In Chemistry Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved Dr. Michael Latham Chair of Committee Dr. John D’Auria Dr. Joachim Weber Mark Sheridan Dean of the Graduate School May, 2020 Copyright 2020, Neill Kim Texas Tech University, Neill Kim, May 2020 ACKNOWLEDGMENTS I would like to thank Texas Tech University for the resources and support they provided, Dr. John D’Auria for all the guidance and support he has given me, and Dr. Michael Latham. I would also like the thank Dr. Charles Stewart for helping with the crystallography of the enzyme. This research was funded by the National Science Foundation under grant No. NSF-171423326 given to Dr. John D’Auria. ii Texas Tech University, Neill Kim, May 2020 TABLE OF CONTENTS ACKNOWLEDGMENTS ........................................................................................... ii ABSTRACT ................................................................................................................. vi LIST OF TABLES ..................................................................................................... vii LIST OF FIGURES .................................................................................................. viii LIST OF SCHEMES ................................................................................................. xii LIST OF ABBREVIATIONS .................................................................................. xiv INTRODUCTION ........................................................................................................ 1 1.1 TROPANE ALKALOIDS .................................................................................. 1 1.2 GRANATANE ALKALOIDS ............................................................................ 3 1.3 TYPE III POLYKETIDE SYNTHASES .............................................................. 4 TROPANE AND GRANATANE ALKALOID BIOSYNTHESIS: A SYSTEMATIC ANALYSIS ........................................................................................ 9 2.1 ABSTRACT: ................................................................................................. 9 2.2 INTRODUCTION.......................................................................................... 10 2.2.1 SIMILARITIES AND DIFFERENCES IN MEDICINAL PROPERTIES ........... 11 2.2.2 THE SCATTERED DISTRIBUTION OF TROPANES AND GRANATANES AMONGST ANGIOSPERMS .................................................................. 13 2.2.3 BIOSYNTHESIS OF TAS AND GAS ...................................................... 18 2.3 TROPANE ALKALOID BIOSYNTHESIS ......................................................... 18 2.4 GRANATANE ALKALOID BIOSYNTHESIS .................................................... 29 2.5 METABOLIC ENGINEERING ........................................................................ 34 2.6 CONCLUSIONS ........................................................................................... 40 TROPANE ALKALOIDS: PATHWAY, POTENTIAL AND BIOTECHNOLOGICAL APPLICATIONS ........................................................... 41 3.1 ABSTRACT ................................................................................................. 41 3.2 INTRODUCTION.......................................................................................... 41 3.3 TROPANE ALKALOID BIOSYNTHESIS .......................................................... 43 3.4 TROPANE ALKALOID SIDE CHAIN MODIFICATIONS ..................................... 65 3.5 CONCLUSION ............................................................................................. 68 TROPANE ALKALOID BIOSYNTHESIS IN ERYTHROXYLUM COCA INVOLVES AN ATYPICAL TYPE III POLYKETIDE SYNTHASE ................. 70 4.1 ABSTRACT ................................................................................................. 70 4.2 INTRODUCTION.......................................................................................... 71 4.3 RESULTS ................................................................................................... 75 4.3.1 SEQUENCE ANALYSIS OF ECPYKS1, ECPYKS2, AND ECCHS .......... 75 4.3.2 QUANTITATIVE REAL-TIME PCR OF GENE EXPRESSION IN E. COCA .... 78 4.3.3 PRODUCT FORMATION IN THE AERIAL TISSUES OF E. COCA USING CRUDE EXTRACTS .............................................................................. 80 iii Texas Tech University, Neill Kim, May 2020 4.3.4 ECPYKS DOES NOT USE THE N-METHYL-∆1-PYRROLINIUM CATION AS A SUBSTRATE ................................................................................ 81 4.3.5 ECPYKS1 AND ECPYKS2 ARE ATYPICAL TYPE III PKSS THAT CATALYZE THE FORMATION OF 3-OGA ............................................. 82 4.3.6 MUTAGENESIS EXPERIMENTS ............................................................ 88 4.3.7 STRUCTURAL DATA BASED ON CRYSTALLOGRAPHY .......................... 91 4.3.8 TRANSIENT EXPRESSION SYSTEM IN N. BENTHAMIANA ....................... 94 4.4 DISCUSSION .............................................................................................. 95 4.5 MATERIALS AND METHODS ....................................................................... 97 4.5.1 CHEMICAL REAGENTS AND PLANT MATERIAL .................................... 97 4.5.2 CLONING, HETEROLOGOUS EXPRESSION AND PURIFICATION OF WILD-TYPE ECPYKS1, ECPYKS2 AND ECCHS ............................... 98 4.5.3 SITE DIRECT MUTAGENESIS FOR PYKS MUTANTS .............................. 99 4.5.4 CRUDE PROTEIN EXTRACTION FROM E. COCA LEAVES ...................... 101 4.5.5 RNA EXTRACTION AND CDNA SYNTHESIS ...................................... 101 4.5.6 QUANTITATIVE REAL-TIME PCR ...................................................... 101 4.5.7 PREPARATION OF THE 4-(1-METHYL-2-PYRROLIDINYL)-3- OXOBUTANOATE STANDARD ............................................................ 102 4.5.8 KINETIC ANALYSIS OF ENZYMES AND THE DETERMINATION OF PLANT ACTIVITY .............................................................................. 103 4.5.9 THROMBIN CLEAVAGE ..................................................................... 105 4.5.10 CRYSTALLIZATION OF ABPYKS AND ECPYKS2 ............................. 105 4.5.11 TRANSIENT EXPRESSION OF N. BENTHAMIANA ................................... 106 PYKS IN P. GRANATUM ...................................................................................... 107 5.1 INTRODUCTION........................................................................................ 107 5.2 RESULTS ................................................................................................. 108 5.2.1 SEQUENCE ANALYSIS OF PUTATIVE P. GRANATUM GENES ................ 108 5.2.2 CLONING, EXPRESSION AND PURIFICATION OF PUTATIVE PGPYKS CANDIDATES .................................................................................... 109 5.2.3 KINETIC ANALYSIS OF PYPYKS CANDIDATES ................................. 113 5.3 MATERIALS AND METHODS ..................................................................... 115 5.3.1 PLANT MATERIALS ........................................................................... 115 5.3.2 TOTAL RNA EXTRACTION OF PUNICA GRANATUM ROOT BARK ......... 116 5.3.3 CDNA SYNTHESIS ............................................................................ 117 5.3.4 PCR AMPLIFICATION OF CANDIDATE GENES FROM CDNA ............... 117 5.3.5 COLONY PCR OF K. PHAFFII ............................................................ 117 5.3.6 CHEMICAL COMPETENT TRANSFORMATIONS ................................... 118 5.3.7 ELECTROCOMPETENT TRANSFORMATIONS OF K. PHAFFII CELLS ...... 118 5.3.8 E. COLI PROTEIN EXPRESSION AND PURIFICATION ............................ 118 5.3.9 K. PHAFFII PROTEIN EXPRESSION AND PURIFICATION ....................... 120 5.3.10 ENZYME ASSAY CONDITIONS FOR PYKS ASSAY AND KINETIC ANALYSIS ........................................................................................ 121 5.3.11 ENZYME ASSAY CONDITIONS FOR CHS ASSAY ................................. 122 5.4 CONCLUSION ........................................................................................... 123 iv Texas Tech University, Neill Kim, May 2020 BIBLIOGRAPHY .................................................................................................... 125 v Texas Tech University, Neill Kim, May 2020 ABSTRACT Alkaloids represent 20% of all specialized metabolites. These important compounds are produced by plants to protect themselves from biotic or abiotic forces they may encounter. Tropane alkaloids and granatane alkaloids possess a wide array of pharmaceutical properties. Understanding the enzymes involved in the biosynthesis of these compounds will give a better insight on their evolutionary origins. This will aid synthetic biology endeavors to produce high yields of these important specialized metabolites. Although the biosynthesis of tropane alkaloids is well studied in the Solanaceae family, it is still not fully elucidated in the Erythroxylaceae family. Previous studies on these two families hypothesize a polyphyletic origin of enzymes. As more enzymes within the pathway are characterized, endeavors to metabolically engineer these pharmacologically active metabolites will increase. Here, I report a new atypical type III polyketide synthase enzyme from the Erythroxylaceae
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages160 Page
-
File Size-