© Copyright 2019 William M. Holden

© Copyright 2019 William M. Holden

© Copyright 2019 William M. Holden Laboratory-based Tender X-ray Emission Spectroscopy: Instrumental, Experimental, and Theoretical Advances and Application to the Study of Phosphorus and Sulfur Electronic Structure William M. Holden A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2019 Reading Committee: Gerald T. Seidler, Chair Marjorie Olmstead Joshua J. Kas Program Authorized to Offer Degree: Physics University of Washington Abstract Laboratory-based Tender X-ray Emission Spectroscopy: Instrumental, Experimental, and Theoretical Advances and Application to the Study of Phosphorus and Sulfur Electronic Structure William M. Holden Chair of the Supervisory Committee: Professor Gerald T. Seidler Physics Tender x-ray emission spectroscopy (XES) is a powerful, element-specific, atomically local probe of chemical and electronic structure. Taking advantage of advances in every component of spectrometer systems including crystal analyzers, color x-ray cameras, and bremsstrahlung x-ray tubes, I designed, built, and demonstrated a new, laboratory-based tender x-ray emission spectrometer. This apparatus creates an opportunity for more widespread access to tender XES measurements, which in recent years have been largely restricted to a limited number of beamlines at synchrotron facilities. Using the developed spectrometer, I performed lab-based XES studies on phosphorus and sulfur, whose emission lines lie in the energy range of optimal performance, and are of significant experimental value due to their chemical sensitivity and the ubiquity of phosphorus and sulfur in environmental, material, and fundamental science. I conducted analytical applications, demonstrating the speciation of phosphorus in indium phosphide quantum dots and the speciation of sulfur in biochars at low concentration. These studies illustrate the strength of P Kα XES as an alternative to solid-state nuclear magnetic resonance (SSNMR), and the ability for S Kα XES to yield information comparable and complementary to synchrotron x-ray absorption near edge structure (XANES). Supplementing these new experimental capabilities, I utilized linear-response time-dependent density functional theory (LR-TDDFT) for theoretical prediction and analysis of Kα core-to-core and Kβ valence-to-core emission lines of sulfur. The strong quantitative agreement between this theoretical approach and the observed results supports future applications in both analytical and theoretical investigations. With the establishment of these experimental and theoretical capabilities by the work in this thesis, tender XES is primed to grow into a powerful and routine analytical tool in both academia and industry. TABLE OF CONTENTS List of Figures .................................................................................................................... vi List of Tables ................................................................................................................... xxi Chapter 1 Introduction to X-ray Emission Spectroscopy ................................................. 1 1.1 What is X-ray Emission Spectroscopy? .................................................................... 1 1.2 Historical context for XES ........................................................................................ 3 1.3 The modern case for laboratory XES........................................................................ 5 1.3.1 Laboratory spectrometers in 1932 and 2017 ...................................................... 5 1.3.2 Advances in spectrometer components .............................................................. 7 1.3.3 Relation to synchrotron XES ............................................................................. 9 1.4 Overview of recent laboratory XES instruments and applications ......................... 11 1.5 References ............................................................................................................... 13 Chapter 2 Tender X-ray Spectroscopy ........................................................................... 16 2.1 Interaction of photons with matter .......................................................................... 16 2.1.1 Interaction Hamiltonian with electromagnetic field ........................................ 17 2.1.2 Photoelectric absorption process...................................................................... 22 2.1.3 Relaxation after creation of core-hole.............................................................. 24 2.1.4 X-ray fluorescence process .............................................................................. 26 2.2 X-ray emission spectroscopy (XES) overview ....................................................... 27 2.3 Kα XES of phosphorus, sulfur, and nearby elements ............................................. 28 2.3.1 Kα Overview .................................................................................................... 28 2.3.2 Kα chemical shifts and sensitivity to oxidation state ....................................... 30 2.3.3 Kα satellite features ......................................................................................... 33 2.4 Kβ Valence-to-Core XES of phosphorus, sulfur, and nearby elements ................. 34 2.4.1 Kβ intensity relative to Kα ............................................................................... 36 2.4.2 Kβ XES spectral features and sensitivities ...................................................... 37 2.4.3 Polarization effects and anisotropic emission .................................................. 47 2.4.4 Kβ satellites ...................................................................................................... 50 2.5 Non-resonant vs. resonant (XES, RXES, & RIXS) ................................................ 51 i 2.6 XES of other elements and other emission lines .................................................... 55 2.7 X-ray absorption spectroscopies ............................................................................. 57 2.7.1 X-ray absorption near-edge spectroscopy (XANES) ....................................... 58 2.7.2 Extended x-ray absorption fine structure (EXAFS)......................................... 63 2.8 X-ray photoelectron spectroscopy (XPS) ............................................................... 67 2.9 References ............................................................................................................... 73 Chapter 3 Tender XES Instrumentation ......................................................................... 80 3.1 Overview ................................................................................................................. 80 3.2 EDXRF, WDXRF, and XES ................................................................................... 81 3.3 Excitation sources ................................................................................................... 82 3.3.1 X-ray tubes ....................................................................................................... 82 3.3.2 Synchrotron beamlines..................................................................................... 87 3.3.3 Other excitation sources ................................................................................... 91 3.4 Detectors ................................................................................................................. 93 3.5 Crystal analyzers ..................................................................................................... 95 3.6 Rowland focusing geometry ................................................................................... 99 3.6.1 Overview of Rowland circle concepts ........................................................... 100 3.6.2 Johann and Johansson geometries ................................................................. 101 3.6.3 Johann error ................................................................................................... 104 3.6.4 Johann error effects on spectrometer response function ................................ 108 3.7 Other crystal analyzer spectrometer geometries ................................................... 110 3.7.1 Double-crystal ................................................................................................ 111 3.7.2 von Hamos ..................................................................................................... 112 3.7.3 Laue-type ....................................................................................................... 113 3.8 Sample considerations for tender XES ................................................................. 115 3.9 References ............................................................................................................. 116 Chapter 4 Overview of Published Research ................................................................. 121 4.1 Research presented in chapters of this thesis ........................................................ 121 4.2 Other outcomes of the efforts in this thesis .......................................................... 122 4.3 References ............................................................................................................. 123 ii Chapter 5 A Compact Dispersive Refocusing Rowland Circle X-ray Emission Spectrometer for Laboratory, Synchrotron, and XFEL Applications ........................ 124 5.1

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    349 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us