Common Drain Stage (Source Follower)

Common Drain Stage (Source Follower)

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage vgs = vi - vo vbs = - vo VDD RS VvIiN C C+C gd gdg b B&D vi G vs V vOoU T + VS C r gmvgs -gmbvo vgs gs o IB RL CL - vo S V B RL Csb+CL EE 303 – Common Drain Stage 2 CD Bias Point VDD § Assume VB=VOUT, so ID=IB RS VIN VOUT = VIN −VGS I VOUT D VGS = VT + VS 0.5COXW / L I R B L V V PHI V PHI T = T 0 +γ ( + OUT − ) VB VDS = VDD −VOUT = VDD −VIN +VGS § For M1 to be in saturation VDS > VOV = VGS +VT ! VDD −VIN +VGS > VGS +VT ! This is almost always the case VIN < VDD +VT in practical realizations EE 303 – Common Drain Stage 3 I/O DC characteristic (1) Example: DC Transfer Function − 1 um Technology 5 VIN = 2.5V; I1=400µA; 4.5 VDD=5V; W/L=100µm/1µm Vout 4 Vth M1 triode 3.5 VDD-Vth ≈ 3.43 V 3 Source: Razavi [V] 2.5 out V 2 M operation 1 1.5 6 1 5 0.5 Vds=Vdd−Vout 0 4 Vov=Vin−Vout−Vth 0 1 2 3 4 5 6 7 8 V [V] in ≅ 3 AV (@ VIN = 2.5V) 0.821 M1 sat. Math “artifact” due to ideal current source 2 (a current source can take any voltage value across it !!) 1 M1 triode § Vout(min) ≈ 0 0 0 1 2 3 4 5 6 7 8 § Vout(max) ≈ VDD-Vth V [V] in EE 303 – Common Drain Stage 4 I/O DC characteristic (2) Example: DC Transfer Function − 1 um Technology 5 VIN = 2.5V; I =400 A; 1 µ 4.5 VDD= 5V; V = 0.9V; 4 I1 B W/L=100µm/1µm; 3.5 3 Vout=Vds2 element 0:m1 0:m2 [V] Vov2 model 0:simple_n 0:simple_n 2.5 region Saturati Saturati out Vds1 id 452.1261u 452.1261u V 2 Vov1 ibs -13.0315f 0. ibd -50.0000f -13.0315f 1.5 vgs 1.1968 900.0000m vds 3.6968 1.3032 vbs -1.3032 0. 1 vth 833.4784m 500.0000m vdsat 363.3703m 400.0000m 0.5 vod 363.3703m 400.0000m beta 6.8484m 5.6516m 0 gam eff 600.0000m 600.0000m 0 1 2 3 4 5 6 7 8 V [V] gm 2.4885m 2.2606m in gds 33.0095u 40.0000u gmb 514.7852u 758.2384u M off 2 M2 triode M2 sat M2 sat cdtot 72.3963f 93.2122f M sat M sat cgtot 256.5245f 256.4846f 1 1 M1 sat M1 triode cstot 246.1466f 286.3341f cbtot 66.1318f 128.5634f § Reduced output (and input) swing cgs 203.3341f 203.3341f - V (max) = V – V cgd 51.1337f 50.3996f out DD OV1 - Vout(min) = VOV2 * measurement EE 303 – Common Drain Stage 5 av0= 808.9285m CD Voltage Transfer ' 1 $ v % sC sC " v sC g v v 0 o % Ltot + gs + " − i gs − m ( i − o )= & RLtot # vi v g + sC o = m gs + 1 g v vi v Cgs m gs g + sC + sC + gs m gs Ltot R - Ltot LHP C +C v gd gb o zero C R Ltot Ltot sC 1+ gs v g g o = m ⋅ m = 1 vi s(Cgs +CLtot ) gm + 1+ RLtot 1 gm + 1 RLtot CLtot = CL + Csb RLtot = RL || || ro g s mb 1− = a ⋅ z v0 s ≅ 1 1− often RLtot /gmb p EE 303 – Common Drain Stage 6 Low Frequency Gain g 1 a = m R = R || || r v0 1 Ltot L o gmb gm + RLtot § Interesting cases V DD – Ideal current source; PMOS with source tied to body; no load resistor; RL=∞, ro=∞, gmb= 0 Vo Vi C L a =1 Yin v0 V DD – Ideal current source; NMOS; no load resistor;! V i RL=∞, ro=∞, gmb≠0 V o gm av0 = (typically ≅ 0.8) I R C B L L gm + gmb – Ideal current source, PMOS with source tied to body; load resistor r =∞, g =0, R finite g o mb L a = m v0 1 gm + EE 303 – Common Drain Stage 7 RL Low frequency input and output resistances Rin Rout RS vin vout vs gmvin ro 1/gm 1/gmb RL av0= gm / (g’m+1/ro+1/RL) § Rin = ∞ § Rout = ro || (1/g’m) EE 303 – Common Drain Stage 8 High Frequency Gain gm av0 = g'm +1/ ro +1/ RL s 1 1− g g + vo z m m av (s)= = av0 ⋅ z = − RLtot v s C p = − i 1− gs C + C p gs Ltot § Three scenarios: The presence of a LHP zero leads to the possibility that the pole and zero |z|<|p| |z|>|p| |z|=|p| will provide some degree of cancellation, |a (s)| |a (s)| |a (s)| v v v leading to a broadband response av0 av0 av0 f f f (infinite bandwidth ?!?) EE 303 – Common Drain Stage 9 CD Input Impedance Consistent with insight from § By inspection: Miller Theorem Hint: Yin = sCgd + sCgs (1− av (s)) i=Cgs(vi-vo) vi Yin + § Gain term av(s) is real and close to unity C gmvgs vgs gs up to fairly high frequencies - C +C v gd gb o § Hence, up to moderate frequencies, we CLtot RLtot see a capacitor looking into the input – A fairly small one, Cgd, plus a fraction of Cgs EE 303 – Common Drain Stage 10 CD input impedance for PMOS stage (with Body-source tie) VDD § gmb generator inactive – Low frequency gain very close g r >> 1 IB to unity m o g vOVUT m out av0 = ≅1 Cgs 1 g + CL m r Cbsub o vVIinN § Very small input capacitance Cgd CCin @ ≈ C Cgd in gd Yin = sCgd + sCgs (1− av (s)) Yin ≅ sCgd for av=1 (Vout=Vin) no current flows through Cgs(perfect bootstrap) § The well-body capacitance Cbsub can be large and may significantly affect the 3-db bandwidth EE 303 – Common Drain Stage 11 CD Output Impedance (1) § Let's first look at an analytically simple case – Input driven by ideal voltage source 1 1 Zout = + gm + gmb s(Cgs + Csb ) C gmvgs vgs gs - vo Cgd+Cgb Zout Csb 1/gmb ZL AC shorted Low output impedance • Resistive up to very high frequencies YL=sCL+1/RL EE 303 – Common Drain Stage 12 CD Output Impedance (2) § Now include finite source resistance vg Ri g (v -v ) Cgs m g o Zx Zout Cgd+Cgb vo i x Csb 1/gmb ZL Neglect Cgd Neglecting Cgd " v % v R i = v − v g + sC = v 1− g g + sC g ≅ i x ( o g )( m gs ) o $ '( m gs ) 1 # vo & vo + Ri " % sCgs $ ' 1+ sR C 1+ sR C vo i gs 1 $ i gs ' Zx = ≅ = i g + sC g $ sCgs ' x m gs m $ 1+ ' # gm & EE 303 – Common Drain Stage 13 CD Output Impedance (3) 1 1+ sRiCgs Z ≅ ( ) x g " sC % m $1+ gs ' # gm & NOTE: Typically 1/gm is small, § Two interesting cases so this can happen !! R < 1/g i m Ri > 1/gm |Zx(s)| |Zx(s)| 1/gm 1/gm f f Inductive behavior! EE 303 – Common Drain Stage 14 Equivalent Circuit for Ri > 1/gm for s 0 Z 1/ g 1 (1+ sRiCgs ) = ⇒ x = m Zx ≅ g " sC % for s → ∞ ⇒ Zx = Ri m $1+ gs ' # gm & Z Z x out 1 R1 || R2 = R1 gm for s = 0 ⇒ Zx = R1 || R2 R2 Csb 1/gmb R = R for s → ∞ ⇒ Z = R 2 i x 2 L R2C L = i gs gm Ri −1 L 1+ (R + sL)R R R R Z = 1 2 = 1 2 1 x R + R + sL R + R L 1 2 1 2 1+ R1 + R2 § This circuit is prone to ringing! – L forms an LC tank with any capacitance at the output – If the circuit drives a large capacitance the response to step-like signals will result in ringing EE 303 – Common Drain Stage 15 Inclusion of Parasitic Input Capacitance* What happens to the output impedance if we don’t neglect Ci=Cgd ? * Hint: replace Ri with 1+ sR C +C Ri 1 ( i ( gs i )) Zi = Zx = Ri + sCiRi gm ! sCgs $ #1+ &(1+ sRiCi ) " gm % € 1 g 1 1 1 g < m < < < m R C +C R C C Ri (Cgs +Ci ) Cgs RiCi i ( gs i ) i i gs |Z (s)| |Zx(s)| x 1/gm 1/gm f f EE114 EE 303 – Common Drain Stage 16 Applications of the Common Drain Stage § Level Shifter § Voltage Buffer § Load Device EE 303 – Common Drain Stage 17 Application 1: Level Shifter Vi=VGS +Vo VDD Vo=Vi – VGS= Vi – (Vt+VOV) Vi VGS=Vt+Vov ≅ const. Vo IB § Output quiescent point is roughly Vt+Vov lower than input quiescent point § Adjusting the W/L ratio allows to “tune” Vov (= the desired shifting level) EE 303 – Common Drain Stage 18 Why is lowering the DC level useful ? § When building cascades of CS and CG amplifiers, as we move along the DC level moves up § A CD stage is a way to buffer the signal, and moving down the DC level EE 303 – Common Drain Stage 19 Application 2: Buffer VDD VVBB1 IB1 RD (large) M1 vx Rout vVooutut Vvinin MX I RL M2 B2 (small) VB2 § Low frequency voltage gain of the above circuit is ~gmRbig – Would be ~gm(Rsmall||Rbig) ~ gmRsmall without CD buffer stage § Disadvantage Vout (max) = VDD −VOV1 – Reduced swing Vout (min) = VOV 2 EE 303 – Common Drain Stage 20 Buffer Design Considerations VDD V § Without the buffer the minimum VBB1 allowable value of Vx for Mx to IB1 RD (large) M1 remain in saturation is: VX > VGSX – Vthx vx Rout Vx vVououtt § With the buffer for M2 to remain in sat.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    30 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us