Curriculum Vitae Octubre 2018 1. DATOS GENERALES Nombre: Máximo López López Escolaridad: Licenciatura.- Licenciado en Física y Matemáticas, “Estudio de la retención de carga eléctrica en SiO2 no estequiometrico como una aplicación para memorias no volátiles”. (Física del Estado Sólido). Instituto Politécnico Nacional. Escuela Superior de Física y Matemáticas, México, 1985. Maestría.- Maestría en Física, “Mecanismos de inyección y retención de carga en SiO2 No- estequiometrico”. (Física del Estado Sólido). Centro de Investigación y Estudios Avanzados del IPN. Departamento de Física, México 1988. Doctorado.- Doctorado en Ciencias. “Investigation on the initial growth process and interface formation of Si-GaAs heterostructures grown by molecular beam epitaxy”. (Física del Estado Sólido). Universidad Tecnológica de Toyohashi, Japón, 1992. Experiencia Profesional. Profesor Asociado UAM-Azcapotzalco 1987-1988. Investigador del 01-07-92 al 30-10-95 Optoelectronics Technology Research Laboratory, Tsukuba, Japón. Investigador CINVESTAV 2B: 01-11-95 Actualmente Investigador CINVESTAV 3D Coordinador de Admisión del Departamento de Física del CINVESTAV Enero 1996 - Febrero 2000 Jefe de la Sección de Física del Estado Sólido del Departamento de Física del CINVESTAV Marzo 2000 - a Marzo 2003 Miembro del Sistema Nacional de Investigadores, Nivel III (desde 2005). Jefe del Departamento de Física del CINVESTASV Abril 2011 a la fecha 1 2. PRODUCTOS DE INVESTIGACION O DESARROLLO. 2.1. ARTICULOS ORIGINALES DE INVESTIGACION. 2.1.a. Publicaciones en extenso en revistas de prestigio internacional con arbitraje estricto. 2.1.a.1. M. López. “Electrical charge inyection and storage in off stoichiometric SiO2 films”. Journal of Materials Research. vol. 4, pg. 1233 a 1237, 1989. 2.1.a.2. M. López, T. Ikei, Y Takano, K. Pak, and H. Yonezu. “Initial growth mechanism of GaAs on Si (110)”. Jpn. Journal of Applied Physics, vol. 29, pg. 551 a 554, 1990. 2.1.a.3. M. López, Y. Takano, K Pak, and H. Yonezu. “Realization of low facet density and the growth mechanism of GaAs on GaAs (110)”. Applied Physics Letters, vol. 58, pg. 580 a 582, 1991. 2.1.a.4. Y. Takano, M. López, T. Torihata, T. Ikei, Y. Kanaya, K. Pak and H. Yonezu.“Realization of mirror surface in (111) and (110) oriented GaAs by migration enhanced epitaxy”. Journal of Crystal Growth. vol. 111, pg. 216 a 220, 1991. 2.1.a.5. M. López, Y. Yamauchi, T. Kawai, Y. Takano, K Pak, and H. Yonezu. “Molecular beam epitaxy andmigration enhanced epitaxy growth modes of GaAs on pseudo-morphic Si films grown on GaAs (100) substrates”. Journal of Vacumm Science and Technology B, vol. 10, pg. 2157 a 2162, 1992 2.1.a.6. M. López, Y. Takano, K. Pak and H. Yonezu. “Initial growth mechanism of Si on GaAs studied by reflection high-energy electron difraction oscillations”. Jpn. Journal of Applied Physics. vol. 31 pg. 1745 a 1751, 1992. 2.1.a.7. M. López, T. Ishikawa, Y. Nomura. “Molecular beam epitaxy of GaAs/AlAs on mesa stripes along the (001) direction for quantum wire fabrication”. Jpn. Journal of Applied Physics Part 2, vol. 32. pg. 1051 a 1054, 1993. 2.1.a.8. T. Kawai, H. Yonezu, Y. Yamauchi, M. López and K Pak. “Initial growth process of GaAs on pseudomorphic Si interlayer and Ge substrate”. Journal of Crystal Growth. vol. 127, pg. 107 a 111, 1993. 2.1.a.9. M. López, T. Ishikawa, Y. Nomura. “Molecular beam epitaxial growth of pyramidal structures on patterned GaAs (100) substrates for three dimensionally confined structures”. Electronics Letters. vol. 29, pg. 2225 a 2227, 1993. 2.1.a.10. M. Meléndez, S. Jiménez, M. López, I. Hernández, Y. Yamauchi, T. Kawai, K. Pak, and H. Yonezu. “Differencial photoreflectance and Raman studies of 2 MBE grown GaAs/Si/GaAs”, Journal Physics: Condensed Matter. vol. 5A, pg. 357 a 358, 1993. 2.1.a.11. Matsuyama, M. López, N. Tanaka, and T. Ishikawa. “Cathodoluminiscence of wirelike GaAs/AlAs quantum well structures grown on substrates patterned with (001) mesa stripes”. Jpn. Journal of Applied Physics part 2, vol. 33, pg. 627 a 630, 1994. 2.1.a.12. F. Osaka, T. Ishikawa, N. Tanaka, M. López, and I. Matsuyama. “Scanning tunneling microscopy of C12-gas etched GaAs (001) surfaces using an ultrahigh vacumm transfer system”. Journal of Vacumm Science and Technology B, vol. 12, pg. 2894 a 2900, 1994. 2.1.a.13. M. López, T. Ishikawa, I. Matsuyama, N. Tanaka, and Y. Nomura. “MBE fabrication of GaAs quantum wires on mesa stripes along the [001] direction”. Solid State Electronics, vol. 37, pg. 563 a 565, 1994. 2.1.a.14. T. Ishikawa, N. Tanaka, M. López, I. Matsuyama. “Electron beam lithography using GaAs oxidized resist for GaAs/AlGaAs ultrafine structure fabrication”. Journal of Photopolymer Science and Technology. vol. 7, pg. 595 a 598, 1994. 2.1.a.15. T. Yodo, M. Tamura, M. López, Y. Kajikawa. “GaAs heteroepitaxial growth on vicinal Si (110) substrates by molecular beam epitaxy”. Journal of Applied Physics, vol. 76, pg. 7630 a 7632, 1994. 2.1.a.16. M. Meléndez, S. Jiménez, M. López, I. Hernández, T. Kawai, K. Pak and H. Yonezu. “A study of Franz-Keldysh oscillations of GaAs/Si/GaAs and AlAs/Si/AlAs heterostructures”. Journal of Applied Physics. vol. 76, pg. 3616 a 3619, 1994. 2.1.a.17. N. Tanaka, M. López, I. Matsuyama, T. Ishikawa. “Electron beam patterning mechanism of GaAs oxide mask layers used in-situ electron beam lithography”. Jpn. Journal of Applied Physics Part 1, vol.34, pg. 1194 a 1198, 1995. 2.1.a.18. M. López, N. Tanaka, I. Matsuyama and T. Ishikawa. “In situ GaAs patterning and subsequent molecular-beam epitaxial regrowth of AlGaAs/GaAs wire structures”. Jpn. Journal of Applied Physics Part 2, vol. 34, pg. L958 a L961, 1995. 2.1.a.19. M. López, N. Tanaka, I. Matsuyama and T. Ishikawa. “Improvement in patterning characteristics of GaAs oxide mask used in in-situ electron-beam lithography”. Jpn. Journal of Applied Physics, vol. 34, pg. L1024 a L1026, 1995. 3 2.1.a.20. T. Ishikawa, I. Matsuyama, N. Tanaka, M. López, M. Tamura and Y. Nanbu. “In situ fabrication of buried GaAs/AlGaAs quantum-well mesa-stripe structures with improved regrown interfaces”. Jpn. Journal of Applied Physics Part 2, vol. 34, pg. L1412 a L11415, 1995. 2.1.a.21. M. López and Y. Nomura. “Surface diffusion length of Ga adatoms in molecular beam epitaxy on GaAs(100)-(110) facet structures”. “Surface diffusion length of Ga adatoms in molecular beam epitaxy on GaAs (100)- (110) facet structures”. Journal of Crystal Growth. vol. 150, pg. 68-72, 1995. 2.1.a.22. T. Ishikawa, N. Tanaka, M. López, I. Matsuyama. “Nanometer-scale pattern formation of GaAs by in-situ electron beam lithography using surface oxide layer as a resist-film”. Journal of Vacumm Science and Technology B, vol. 13 pg. 2777 a 2780, 1995. 2.1.a.23. N. Tanaka, M. López, I. Matsuyama, T. Ishikawa. “Etching temperature dependence of surface composition and reconstruction for Cl2 etched GaAs layers”. Journal of Vacumm Science Technology B, vol. 13 pg. 2250 a 2254, 1995. 2.1.a.24. M. López, N. Tanaka, I. Matsuyama and T. Ishikawa. “AlGaAs/GaAs wire and box structures prepared by molecular-beam epitaxial regrowth on in situ patterned GaAs substrates”. Appl. Phys. Lett. vol. 68, pg 658 a 660, 1996. 2.1.a.25. M. Meléndez, M. López, e I. Hernández. “Photoreflectance and photoluminscence characterization of GaAs quantum wells grown by molecular beam epitaxy on flat and misoriented substrates”. Jpn. Journal Appl. Phys. vol. 35, pg. 3923 a 3927, 1996. 2.1.a.26. M. López, N. Tanaka, I. Matsuyama and T. Ishikawa. “Fabrication of quantum wires on GaAs substrates patterned by in situ electron-beam lithograpy”. Solid State Electronics, vol. 40, pg. 627 a 631, 1996. 2.1.a.27. T. Ishikawa, N. Tanaka, M. López, e I. Matsuyama “Effects of GaAs- surface roughness on the electron-beam patterning characteristcs of a surface- oxide layer”. Jpn. Journal of Applied Physics vol. 35, pg. L619 a L621, 1996. 2.1.a.28. M. López and T. Ishikawa. “Vertically stacked quantum wires fabricated by an in situ processing technique”. Journal of Crystal Growth, vol. 175, pg 799 a 803, 1997. 2.1.a.29. V. H. Méndez-García, M. López, and I. Hernández. “Study of the initial growth porcess of ZnSe on Si(111) by molecular beam epitaxy”. Jpn. Journal Appl. Phys. vol. 36, pg. 1153 a 1156, 1997. 2.1.a.30. M. López López, M. Meléndez, and S. Goto. “Photoreflectance study of the substrate-filminterface of GaAs homoepitaxial structures with different in situ 4 substrate surface cleanining procedures”. Appl. Phys. Lett. vol. 71, pg 338 a 340, 1997. 2.1.a.31. M.E. Constantino, H. Navarro-Contreras, G. Ramírez-Flores, M. A. Vidal, A. Lastras-Martínez, I. Hernández-Calderón, O. De Melo, M. López-López. “Observation of stress effects on GaAs in the interface of MBE grown ZnSe/GaAs(100) heterostructures”, Appl. Surface Science, vol. 134, 95-102 (1998). 2.1.a.32. J. Luyo-Alvarado, M. Meléndez-Lira, M. López-López, I. Hernández- Calderón, M. E. Constantino, H. Navarro-Contreras, M. A. Vidal, Y. Takagi, K. Samonji, and H. Yonezu. “Optical and structural characterization of ZnSe films grown by molecular beam epitaxy on GaAs substrates with- and without GaAs buffer layers". J. Appl. Phys. vol. 84, 1551-1557 (1998). 2.1.a.33. V. H. Méndez-García and M. López-López. “Si substrate treatment with nitrogen for the molecular beam epitaxial growth of ZnSe”. Electron. Lett. vol. 34, pg 1791 a 1793, 1998. 2.1.a.34. M. E. Constantino, M. A. Vidal, B.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages82 Page
-
File Size-