ESE 531: Digital Signal Processing Lecture Outline Downsampling

ESE 531: Digital Signal Processing Lecture Outline Downsampling

Lecture Outline ESE 531: Digital Signal Processing ! Downsampling/Upsampling ! Practical Interpolation ! Non-integer Resampling Lec 10: February 14th, 2017 ! Multi-Rate Processing Practical and Non-integer Sampling, Multi- rate Sampling " Interchanging Operations ! Polyphase Decomposition ! Multi-Rate Filter Banks Penn ESE 531 Spring 2017 - Khanna Penn ESE 531 Spring 2017 - Khanna 2 Downsampling Downsampling ! Definition: Reducing the sampling rate by an integer number Penn ESE 531 Spring 2017 - Khanna 3 Penn ESE 531 Spring 2017 - Khanna 4 Example Example 2π 4π 2π 4π 6π Penn ESE 531 Spring 2017 - Khanna 5 Penn ESE 531 Spring 2017 - Khanna 6 1 Example Example Penn ESE 531 Spring 2017 - Khanna 7 Penn ESE 531 Spring 2017 - Khanna 8 Upsampling Upsampling ! Definition: Increasing the sampling rate by an integer number x[n] = xc (nT ) xi[n] = xc (nT ') xi[n] Penn ESE 531 Spring 2017 - Khanna 9 Penn ESE 531 Spring 2017 - Khanna 10 Frequency Domain Interpretation Frequency Domain Interpretation Penn ESE 531 Spring 2017 - Khanna 11 Penn ESE 531 Spring 2017 - Khanna 12 2 Example Example Penn ESE 531 Spring 2017 - Khanna 13 Penn ESE 531 Spring 2017 - Khanna 14 Example Example Penn ESE 531 Spring 2017 - Khanna 15 Penn ESE 531 Spring 2017 - Khanna 16 Example Example Penn ESE 531 Spring 2017 - Khanna 17 Penn ESE 531 Spring 2017 - Khanna 18 3 Practical Interpolation Practical Interpolation ! Interpolate with simple, practical filters ! Interpolate with simple, practical filters " Linear interpolation – samples between original samples " Linear interpolation – samples between original samples fall on a straight line connecting the samples fall on a straight line connecting the samples " Convolve with triangle instead of sinc " Convolve with triangle instead of sinc Penn ESE 531 Spring 2017 - Khanna 19 Penn ESE 531 Spring 2017 - Khanna 20 Frequency Domain Interpretation Linear Interpolation -- Frequency Domain xi[n] = xe[n]∗hlin[n] LPF approx Penn ESE 531 Spring 2017 - Khanna 21 Penn ESE 531 Spring 2017 - Khanna 22 Linear Interpolation -- Frequency Domain Linear Interpolation -- Frequency Domain xi[n] = xe[n]∗hlin[n] xi[n] = xe[n]∗hlin[n] LPF LPF approx approx Penn ESE 531 Spring 2017 - Khanna 23 Penn ESE 531 Spring 2017 - Khanna 24 4 Non-integer Sampling Non-integer Sampling ! T’=TM/L ! T’=TM/L " Upsample by L, then downsample by M " Upsample by L, then downsample by M interpolator decimator interpolator decimator Penn ESE 531 Spring 2017 - Khanna 25 Penn ESE 531 Spring 2017 - Khanna 26 Example Example ! T’=3/2T # L=2, M=3 ! T’=3/2T # L=2, M=3 Penn ESE 531 Spring 2017 - Khanna 27 Penn ESE 531 Spring 2017 - Khanna 28 Non-integer Sampling Multi-Rate Signal Processing ! T’=TM/L ! What if we want to resample by 1.01T? " Downsample by M, then upsample by L? " Expand by L=100 interpolator decimator " Filter π/101 ($$$$$) " Downsample by M=101 ! Fortunately there are ways around it! " Called multi-rate " Uses compressors, expanders and filtering Penn ESE 531 Spring 2017 - Khanna 29 Penn ESE 531 Spring 2017 - Khanna 30 5 Interchanging Operations Interchanging Operations - Expander Upsampling Downsampling Upsampling -expanding in time -compressing in time -expanding in time -compressing in frequency -expanding in frequency -compressing in frequency ? Penn ESE 531 Spring 2017 - Khanna 31 Penn ESE 531 Spring 2017 - Khanna 32 Interchanging Operations - Expander Interchanging Operations - Expander Upsampling Upsampling -expanding in time -expanding in time -compressing in frequency -compressing in frequency ? ≠ Penn ESE 531 Spring 2017 - Khanna 33 Penn ESE 531 Spring 2017 - Khanna 34 Interchanging Operations - Expander Interchanging Operations - Compressor Upsampling Downsampling -expanding in time -compressing in time -compressing in frequency -expanding in frequency = = Penn ESE 531 Spring 2017 - Khanna 35 Penn ESE 531 Spring 2017 - Khanna 36 6 Interchanging Operations - Compressor Interchanging Operations - Compressor = = = Penn ESE 531 Spring 2017 - Khanna 37 Penn ESE 531 Spring 2017 - Khanna 38 Interchanging Operations - Compressor Interchanging Operations - Compressor = = = = After compressing Penn ESE 531 Spring 2017 - Khanna 39 Penn ESE 531 Spring 2017 - Khanna 40 Interchanging Operations - Summary Multi-Rate Signal Processing ! What if we want to resample by 1.01T? " Expand by L=100 Filter and expander Expander and expanded filter* " Filter π/101 ($$$$$) " Downsample by M=101 ! Fortunately there are ways around it! " Called multi-rate " Uses compressors, expanders and filtering Compressor and filter Expanded filter* and compressor *Expanded filter = expanded impulse response, compressed freq response Penn ESE 531 Spring 2017 - Khanna 41 Penn ESE 531 Spring 2017 - Khanna 42 7 Polyphase Decomposition Polyphase Decomposition ! We can decompose an impulse response (of our ! We can decompose an impulse response (of our filter) to: filter) to: Penn ESE 531 Spring 2017 - Khanna 43 Penn ESE 531 Spring 2017 - Khanna 44 Polyphase Decomposition Polyphase Decomposition Penn ESE 531 Spring 2017 - Khanna 45 Penn ESE 531 Spring 2017 - Khanna 46 Polyphase Decomposition Polyphase Decomposition Penn ESE 531 Spring 2017 - Khanna 47 Penn ESE 531 Spring 2017 - Khanna 48 8 Polyphase Decomposition Polyphase Implementation of Decimation ! Problem: " Compute all y[n] and then throw away -- wasted computation! " For FIR length N # N mults/unit time Penn ESE 531 Spring 2017 - Khanna 49 Penn ESE 531 Spring 2017 - Khanna 50 Polyphase Implementation of Decimation Polyphase Implementation of Decimation Penn ESE 531 Spring 2017 - Khanna 51 Penn ESE 531 Spring 2017 - Khanna 52 Interchanging Operations - Summary Polyphase Implementation of Decimation Filter and expander Expander and expanded filter Compressor and filter Expanded filter and compressor Penn ESE 531 Spring 2017 - Khanna 53 Penn ESE 531 Spring 2017 - Khanna 54 9 Polyphase Implementation of Decimation Multi-Rate Signal Processing ! What if we want to resample by 1.01T? " Expand by L=100 " Filter π/101 ($$$$$) Each filter computation: -N/M multiplications " Downsample by M=101 -1/M rate per sample #N/M*(1/M) mults/unit time ! Fortunately there are ways around it! " Called multi-rate " Uses compressors, expanders and filtering Total computation: -M filters #N/M mults/unit time Penn ESE 531 Spring 2017 - Khanna 55 Penn ESE 531 Spring 2017 - Khanna 56 Polyphase Implementation of Decimator Polyphase Implementation of Interpolation interpolator decimator interpolator decimator E0(z) E0(z) E0(z) Penn ESE 531 Spring 2017 - Khanna 57 Penn ESE 531 Spring 2017 - Khanna 58 Multi-Rate Filter Banks Multi-Rate Filter Banks ! Use filter banks to operate on a signal differently in ! Use filter banks to operate on a signal differently in different frequency bands different frequency bands " To save computation, reduce the rate after filtering " To save computation, reduce the rate after filtering ! h0[n] is low-pass, h1[n] is high-pass jπn " Often h1[n]=e h0[n] $ shift freq resp by π Penn ESE 531 Spring 2017 - Khanna 59 Penn ESE 531 Spring 2017 - Khanna 60 10 Multi-Rate Filter Banks Multi-Rate Filter Banks ! Assume h0, h1 are ideal low/high pass ! Assume h0, h1 are ideal low/high pass Penn ESE 531 Spring 2017 - Khanna 61 Penn ESE 531 Spring 2017 - Khanna 62 Multi-Rate Filter Banks Multi-Rate Filter Banks ! Assume h0, h1 are ideal low/high pass ! Assume h0, h1 are ideal low/high pass Have to be careful with order! Penn ESE 531 Spring 2017 - Khanna 63 Penn ESE 531 Spring 2017 - Khanna 64 Multi-Rate Filter Banks Multi-Rate Filter Banks ! Assume h0, h1 are ideal low/high pass ! Assume h0, h1 are ideal low/high pass Penn ESE 531 Spring 2017 - Khanna 65 Penn ESE 531 Spring 2017 - Khanna 66 11 Multi-Rate Filter Banks Non Ideal Filters ! h0, h1 are NOT ideal low/high pass ! h0, h1 are NOT ideal low/high pass Penn ESE 531 Spring 2017 - Khanna 67 Penn ESE 531 Spring 2017 - Khanna 68 Non Ideal Filters Perfect Reconstruction non-Ideal Filters Penn ESE 531 Spring 2017 - Khanna 69 Penn ESE 531 Spring 2017 - Khanna 70 Quadrature Mirror Filters Big Ideas ! Downsampling/Upsampling ! Practical Interpolation ! Non-integer Resampling ! Multi-Rate Processing Quadrature mirror filters " Interchanging Operations ! Polyphase Decomposition ! Multi-Rate Filter Banks Penn ESE 531 Spring 2017 - Khanna 71 Penn ESE 531 Spring 2017 - Khanna 72 12 Admin ! HW 4 due Friday " Typo in code in MATLAB problem, corrected handout " See Piazza for more information Penn ESE 531 Spring 2017 - Khanna 73 13 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    13 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us