United States Department of Slope Stability Reference Guide Agriculture for~ationalForests Forest Service Engineering Staff in the United Washington, DC EM-7170-13 Volume I1 August 1994 Coordinators: Rodney W. Prellwitz Thomas E. Koler John E. Steward Editors: David E. Hall Michael T. Long Michael D. Remboldt For wlr hy the U.S. Gwcrnmcnt Printing Ofticc Supcrinlcndcnl 4 Ihcumenl\. Moil Smp: SSOP. W%hingllln. I)[' ?04112~9i?X Vol. I ISBN 0-16-045364-X Vd I1 ISBN 0-1 6-045365-8 VdIII ISBN 0-1 6-045366-6 Sct ISBN 016-045307-0 SECTION 4 PARAMETERS FOR STABILITY ANALYSIS Principal contributors: Cliff Denning, Geotechnical Engineer (Section Leader) USDA Forest Service Mt. Hood National Forest 2955 NW Division Street Gresham, OR 97030 Rod Prellwitz, Geotechnical Engineer USDA Forest Service Intermountain Research Station 1221 S. Main Moscow, ID 83843 RenC Renteria, Geotechnical Engineer USDA Forest Service Regional Office Engineering 324 25th Street Ogden, UT 84401 Ed Rose, Geotechnical Engineer USDA Forest Service Klamath National Forest 1312 Fairlane Road Yreka, CA 96097 Section 4 . Parameters for Slope Stability Analysis Table of Contents Page 4A Fundamental Stress-Strain Relationships ....................................331 4A.1 Introduction. .................................................. 331 4A.2 Definit~ons................................................... 331 4A.3 Stress at a Point ...............................................333 4A.4 Common States of Stress ......................................... 336 4A.5 Effective Stress Principle ......................................... 337 4A.6 Shear Strength Parameters and Failure Criteria ..........................341 4A.6.1 Angle of Internal Friction, 9 ................................ 341 4A.6.2 Cohesion .............................................. 341 4A.7 Conclusion ...................................................343 4B Soil WeighWolume Relationships ........................................345 4B.1 Introduction. ..................................................345 4B.2 Defin~t~ons................................................... 345 4B.3 Example Problems ............................................. 346 4B.4 Estimating Soil Unit Weight ...................................... 352 4B.5 Compaction .................................................. 362 4B.5.1 Introduction ............................................ 362 4B.5.2 Compaction Curve .......................................364 4B.5.3 Compaction Factors (Earthwork Adjustment Factors) ............... 365 4B.5.4 Tables ................................................ 370 4C Strength and Behavior of Soil ............................................377 4C.1 Shear Strength of Non-Cohesive Soils ................................ 377 4C.l .l Angle of Repose ........................................377 4C.1.2 Behavior of Sands During Drained Shear ....................... 377 4C.1.3 Behavior of Sands During Undrained Shear ...................... 378 4C.1.4 Factors That Affect the Shear Strength of Granular Soils ............. 379 4C.1.5 Typical Shear Strength Values for Non-Cohesive Soils .............. 380 4C.2 Shear Strength of Cohesive Soils ................................... 383 4C.2.1 Consolidation State-Stress History ........................... 383 4C.2. 1.1 Normally Consolidated Soils ......................... 383 4C.2.1.2 Overconsolidated Soils ............................. 384 4C.2.2 Shear Strength of Saturated Cohesive Soils ...................... 385 4C.2.2.1 Consolidated-Drained (CD) .......................... 385 4C.2.2.2 Consolidated-Undrained (CU) ........................ 386 4C.2.2.3 Unconsolidated-Undrained (UU) ...................... 387 4C.3 Unique Shear Strength Situations ................................... 390 4C.3.1 Apparent Cohesion ....................................... 390 4'2.3.2 Shear Strength of Compacted Soil Embankments .................. 390 4C.3.3 Shear Strength of Rockfill Embankments ........................394 4C.3.4 Residual Strength ........................................ 397 4C.3.5 Anisotropy .............................................400 4C.4 How to Measure Shear Strength ....................................401 4C.4.1 Analytical Methods-Laboratory Tests ......................... 401 4C.4.1.1 Direct Shear Test ................................. 401 Table of Contents (continued) Page 4C.4.1.2 Triaxial Shear Test ................................ 402 4C.4.1.3 Sample Drainage ..................................404 4C.4.1.4 Curved Mohr-Coulomb Strength Envelope ............... 409 4C.4.2 Empirical Methods-Field Tests ...............................410 4C.4.2.1 Vane Shear Test ..................................412 4C.4.2.2 Dutch Cone Penetrometer ............................413 4C.4.2.3 Standard Penetration Test ............................ 416 4C.4.2.4 Iowa Borehole Shear Test ............................419 4C.4.2.5 Pressuremeter ....................................420 4C.4.2.6 Torvane ........................................421 4C.4.2.7 Pocket Penetrometer ............................... 422 4C.4.2.8 Williamson Drive Probe .............................422 4C.4.2.9 Hand Tools ......................................423 4C.4.3 Back Calculating Strength Values .............................. 424 4C.5 Seismic Behavior ...............................................426 4D Strength and Behavior of Rock ...........................................427 4D.1 Introduction ...................................................427 4D.2 Strength of Rocks .............................................. 427 4D.2.1 Friction ................................................ 427 4D.2.2 Friction Angle ...........................................431 4D.2.3 Peak and Residual Strength .................................. 433 4D.2.4 Effect of Water on Rock Strength .............................436 4D.2.5 Shear Strength of Discontinuities ..............................437 4D.2.5.1 Role of Discontinuity in Slope Failure ...................437 4D.2.5.2 Sliding Due to Gravitational Loading ...................440 4D.2.5.3 Shearing on an Inclined Plane .......................443 4D.2.5.4 Surface Roughness ...............................445 4D.2.5.5 Estimating Joint Compressive Strength and Friction Angle .....448 4D.2.5.6 Size Dependent Joint Properties .......................456 4D.2.5.7 Shear Strength of Filled Discontinuities ..................457 4D.2.6 Large Losses of Shear Strength Due to Displacements ...............460 4D.2.7 Shear Strength Determination by Back-Analysis of Slope Failures .......462 4D.3 Measurement of Rock Strength .....................................463 4D.3.1 Laboratory Tests .........................................463 4D.3.1 .1 Unconfined Compression Test .........................463 4D.3.1.2 Direct Shear Test ................................. 464 4D.3.1.3 Ring Shear Test ..................................465 4D.3.1.4 Brazilian Test (Splitting Tension) ......................465 4D.3.1.5 Four Point Flexural Test .............................466 4D.3.1.6 Triple Core Tilt Test ...............................466 4D.3.2 Strength of Intact Rock .....................................466 4D.3.2.1 Point-Load Test ...................................467 4D.3.2.2 Schmidt Hammer Test ..............................471 4D.3.2.3 Field Direct Shear .................................472 4D.3.3 Geophysical Methods ......................................473 4D.3.3.1 Seismic Methods ..................................473 4D.3.3.2 Resistivity Surveys ................................475 Table of Contents (continued) Page 4F Root Strength and Tree Surcharge .........................................543 4F.1 Root Strength and Root Morphology .................................543 4F.2 Root Strength After Timber Harvest ..................................547 4F.3 Tree Surcharge ................................................548 References ...................................................551 4A. Fundamental Stress-Strain Relationships Cliff Denning, Geotechnical Engineer, Mt. Hood National Forest 4A.1 In this section, the significant stress-strain parameters used in mechanical ("rational") Introduction slope stability analysis will be discussed. Included are parameter definitions and common methods for quantifying them. The intent of section 4A is to introduce some basic definitions and concepts concerning stress and strengths in soil and rock. Section 4A is followed by sections on soil weighr/volume relationships, soil and rock shear strength, ground water, root strength, and tree surcharge. Figure 4A.1 illustrates that section 4 pertains to the level I11 data base within the three-level stability analysis process. LEVEL l I ANALYSIS H Dk:zLE\AE LANDSLIDEINVENTORY I PROJECT 7- "I LEVEL Ill ANALYSIS SITE Figure 4A.l.Section 4 pertains to the level 111 data base in slope stability analysis. 4A.2 Force (LxMITZ) load in pounds (Ib), newtons (N), or kilonewtons (kN) Definitions 1 N = 1 kg-m/sZ 1 lb = 4.4482 N Stress (MLxT2) force per unit area in pounds per square foot (psf), pounds per square inch (psi), or kilopascals (kPa) 1 psi 1 144 psf 1 psi = 6.9 kPa I psf = 0.0479 kPa 1 kPa = 1 kNlm2 Normal Stress, o stress perpendicular to a plane Shear Stress, T stress tangent to and within the plane Pressure a stress acting uniformly in all directions, such as from a fluid (i.e., air or water). Force per unit area. Strain, E deformation per unit length. E is dimensionless (e.g., idin. or mmlmm). Deformation is normally in response
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages408 Page
-
File Size-