Bibliography

Bibliography

129 Bibliography [1] Stathopoulos A. and Levine M. Dorsal gradient networks in the Drosophila embryo. Dev. Bio, 246:57–67, 2002. [2] Khaled A. S. Abdel-Ghaffar. The determinant of random power series matrices over finite fields. Linear Algebra Appl., 315(1-3):139–144, 2000. [3] J. Alappattu and J. Pitman. Coloured loop-erased random walk on the complete graph. Combinatorics, Probability and Computing, 17(06):727–740, 2008. [4] Bruce Alberts, Dennis Bray, Karen Hopkin, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. essential cell biology; second edition. Garland Science, New York, 2004. [5] David Aldous. Stopping times and tightness. II. Ann. Probab., 17(2):586–595, 1989. [6] David Aldous. Probability distributions on cladograms. 76:1–18, 1996. [7] L. Ambrosio, A. P. Mahowald, and N. Perrimon. l(1)polehole is required maternally for patter formation in the terminal regions of the embryo. Development, 106:145–158, 1989. [8] George E. Andrews, Richard Askey, and Ranjan Roy. Special functions, volume 71 of Ency- clopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1999. [9] S. Astigarraga, R. Grossman, J. Diaz-Delfin, C. Caelles, Z. Paroush, and G. Jimenez. A mapk docking site is crtical for downregulation of capicua by torso and egfr rtk signaling. EMBO, 26:668–677, 2007. [10] K.B. Athreya and PE Ney. Branching processes. Dover Publications, 2004. [11] Julien Berestycki. Exchangeable fragmentation-coalescence processes and their equilibrium measures. Electron. J. Probab., 9:no. 25, 770–824 (electronic), 2004. [12] A. M. Berezhkovskii, L. Batsilas, and S. Y. Shvarstman. Ligand trapping in epithelial layers and cell cultures. J. Biophys. Chem., 107:221–227, 2004. 130 [13] A. M. Berezhkovskii, M. I. Monine, C. B. Muratov, and S. Y. Shvarstman. Boundary homog- enization for trapping by patchy surfaces. J. Chem. Phys., 121:11390–4, 2004. [14] A. M. Berezhkovskii, M. I. Monine, C. B. Muratov, and S. Y. Shvarstman. Homogenization of boundary conditions for surfaces with regular arrays of traps. J. Chem. Phys., 121:036103, 2006. [15] Christian Berg. On a generalized gamma convolution related to the q-calculus. In Theory and applications of special functions, volume 13 of Dev. Math., pages 61–76. Springer, New York, 2005. [16] H. Berg and E. Purcell. Physics of chemoreception. Bio. Phys. J., 20:193–219, 1977. [17] Jean Bertoin. Two-parameter Poisson-Dirichlet measures and reversible exchangeable fragmentation-coalescence processes. Combin. Probab. Comput., 17(3):329–337, 2008. [18] Jean Bertoin, Philippe Biane, and Marc Yor. Poissonian exponential functionals, q-series, q-integrals, and the moment problem for log-normal distributions. In Seminar on Stochastic Analysis, Random Fields and Applications IV, volume 58 of Progr. Probab., pages 45–56. Birkh¨auser,Basel, 2004. [19] Shankar Bhamidi, Steven N. Evans, Ron Peled, and Peter Ralph. Brownian motion on dis- connected sets, basic hypergeometric functions, and some continued fractions of Ramanujan. In Probability and statistics: essays in honor of David A. Freedman, volume 2 of Inst. Math. Stat. Collect., pages 42–75. Inst. Math. Statist., Beachwood, OH, 2008. [20] S. Bhargava and Chandrashekar Adiga. On some continued fraction identities of Srinivasa Ramanujan. Proc. Amer. Math. Soc., 92(1):13–18, 1984. [21] W. Bialek. Physics 562 course notes, spring 2006. Princeton University, Graduate Physics Course. [22] W. Bialek and S. Setayeshgar. Cooperativity, sensitivity and noise in biochemical signaling. 2005. [23] W. Bialek and S. Setayeshgar. Physical limits to biochemical signaling. PNAS, 102:10040– 10045, 2005. [24] Patrick Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons Inc., New York, second edition, 1999. A Wiley-Interscience Publication. [25] Alistair N. Boettiger and Michael S. Levine. Transcriptional synchrony in the early drosophila embryo. Manuscript in prep, 2009. 131 [26] Alistair N. Boettiger, Peter Ralph, Michael S. Levine, and Steven Evans. Effects of network topology on noise in transcriptional regulation. Manuscript in prep, 2009. [27] Martin Bohner and Allan Peterson. Dynamic equations on time scales. Birkh¨auserBoston Inc., Boston, MA, 2001. An introduction with applications. [28] K. Borovkov and D. Vere-Jones. Explicit formulae for stationary distributions of stress release processes. J. Appl. Probab., 37(2):315–321, 2000. [29] Onno Boxma, David Perry, Wolfgang Stadje, and Shelemyahu Zacks. A Markovian growth- collapse model. Adv. in Appl. Probab., 38(1):221–243, 2006. [30] W. E. Boyce and R. C. DiPrima. Elementary Differential Equations and Boundary Value Problems; 7th ed. John Wiley & Sons, Inc., Hoboken, NJ, 2003. [31] Otto. Bretscher. Linear Algebra with Applications, Second Edition. Prentice Hall, Upper Saddle River, NJ, 2001. [32] Wlodzimierz Bryc. Classical versions of q-Gaussian processes: conditional moments and Bell’s inequality. Comm. Math. Phys., 219(2):259–270, 2001. [33] W lodzimierz Bryc, Wojciech Matysiak, and Pawe lJ. Szab lowski. Probabilistic aspects of Al- Salam-Chihara polynomials. Proc. Amer. Math. Soc., 133(4):1127–1134 (electronic), 2005. [34] W lodzimierz Bryc and Jacek Weso lowski. Conditional moments of q-Meixner processes. Probab. Theory Related Fields, 131(3):415–441, 2005. [35] G. Burkhardt and Uwe K¨uchler. The semimartingale decomposition of one-dimensional qua- sidiffusions with natural scale. Stochastic Process. Appl., 25(2):237–244, 1987. [36] Wolfgang J. ER Bhler. Generations and degree of relationship in supercritical markov branch- ing processes. Probability Theory and Related Fields, 18(2):141–152, June 1971. [37] Maria-Emilia Caballero, Amaury Lambert, and Geronimo Uribe Bravo. Proof(s) of the lam- perti representation of continuous-state branching processes, 2008. [38] A. Casali and J. Casanova. The spatial control of torso rtk activation: a c-terminal fragment of the trunk protein acts as a signal for torso receptor in the Drosophila embryo. Development, 128:1709–1715, 2001. [39] J. Casanova, M. Furriols, C. A. McCormick, and G. Strhul. Similarties between trunk and spatzle, putative extracellular ligands specifying body pattern in Drosophila. Genes Dev., 9:2539–2544, 1995. [40] J. Casanova, M. Llimargas, S. Greenwood, and G. Struhl. An oncogenic form of human raf can specify terminal body pattern in Drosophila. Mech. Dev., 48:59–64, 1994. 132 [41] J. Casanova and G. Struhl. Localized surface activity of torso, a receptor tyrosine kinase, specifies terminal body pattern in Drosophila. Genes Dev, 3:2025–2038, 1989. [42] R. V. Chacon and B. Jamison. A fundamental property of Markov processes with an appli- cation to equivalence under time changes. Israel J. Math., 33(3-4):241–269 (1980), 1979. A collection of invited papers on ergodic theory. [43] Joseph Chang. Recent common ancestors of all present-day individuals. Advances in Applied Probability, 31:1002–1026, 1999. [44] Joseph Chang. Recent common ancestors of all present-day individuals. Advances in Applied Probability, 31:1002–1026, 1999. [45] Vyjayanthi Chari and Andrew Pressley. A guide to quantum groups. Cambridge University Press, Cambridge, 1994. [46] M. L. Chaudhry. On computations of the mean and variance of the number of renewals: A unified approach. The Journal of the Operational Research Society, 46(11):1352–1364, 1995. [47] T. S. Chihara. An introduction to orthogonal polynomials. Gordon and Breach Science Pub- lishers, New York, 1978. Mathematics and its Applications, Vol. 13. [48] E. Cinnamon, D. Gur-Whanon, A. Helman, D. St. Johnston, G. Jimenez, and Z. Paroush. Capicua integrates input from two maternal systems in Drosophila terminal patterning. EMBO, 23:4571–4582, 2004. [49] F. C. Collins and G. E. Kimball. Diffusion-controlled reaction rates. J. Colloid Sci., 4:425–437, 1949. [50] G. Colombo and P. Dai Pra. A class of piecewise deterministic Markov processes. Markov Process. Related Fields, 7(2):251–287, 2001. [51] Mathieu Coppey, Alistair N. Boettiger, Alexander M. Berezhkovskii, and Stanislav Y. Shvarts- man. Nuclear trapping shapes the terminal gradient in the Drosophila embryo. Current Biol- ogy, 18:915–919, 2008. [52] Mathieu Coppey, Alexander M. Berezhkovskii Yoosik Kim, Alistair N. Boettiger, and Stanislav Y. Shvartsman. Modeling the bicoid gradient: Diffusion and reversible nuclear trap- ping of a stable protein. Developmental Biology, 312:623–630, 2007. [53] L. J. Core, J. J. Waterfall, and J. T. Lis. Nascent rna sequencing reveals, widespread pausing and divergent initiation at human promoters. Science, 322:1845–1848, 2008. 133 [54] M. Costa, M. Marchi, F. Cardarelli, A. Roy, F. Beltram, L. Maffei, and G. M. Ratto. Dynamic regulation of erk2 nuclear translocation and mobility in living cells. J. Cell Sci., 119:4952–4963, 2006. [55] O. L. V. Costa and F. Dufour. Stability and ergodicity of piecewise deterministic Markov processes. SIAM J. Control Optim., 47(2):1053–1077, 2008. [56] Richard Cowan and S. N. Chiu. A stochastic model of fragment formation when DNA repli- cates. J. Appl. Probab., 31(2):301–308, 1994. [57] John Cowden and Michael Levine. Ventral dominance governs sequential patterns of gene expression across the dorsal-ventral axis of the neuroectoderm in the Drosophila embryo. Developmental Biology, 262:335–349, 2003. [58] D. J. Daley and D. Vere-Jones. An introduction to the theory of point processes. Springer Series in Statistics. Springer-Verlag, New York, 1988. [59] M. H. A. Davis. Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models. J. Roy. Statist. Soc. Ser. B, 46(3):353–388, 1984. With discussion. [60] M. H. A. Davis. Markov models and optimization, volume 49 of Monographs on Statistics and Applied Probability. Chapman & Hall, London, 1993. [61] Donald A. Dawson. Measure-valued Markov processes. In Ecole´ d’Et´ede´ Probabilit´esde Saint- Flour XXI—1991, volume 1541 of Lecture Notes in Math., pages 1–260. Springer, Berlin, 1993. [62] Donald A. Dawson and Edwin A. Perkins. Historical processes, volume 93. 1991. [63] F. R. De Hoog, J. H. Knight, and Stokes A. N. An improved method for numerical inversion of laplace transforms.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    23 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us