1 . Introduction

1 . Introduction

MAE 301 / 5 01 , FAL L 2006, L EC TURE NO TES BERNARD MASKIT 1 . I ntroduction 1 .1 . What is mat hematics? It is no t at al l easy to say what mat h e mat i c s is, but , in bro ad outline, it is a way of thought, or co llect io n of ways of thought. These often co nce rn pro bl e ms ar i s i n g in the re al world, whe re the mat h e mat i c al pro b l e m so l v i ng st art s wi t h the co nst ruct io n of a mat h e mat i c al mo d e l of the re al- wo rl d pro bl e m; then so l v i ng this mat h e - mat i c al pro b l e m; then translating the so l ut i o n back to the re al world; an d , nally, as k i n g the quest io n: how we l l do e s this mat h e mat i c al so l ut i o n ac t u al l y so l ve the original pro bl e m. Man y people have the mi s t ake n no t i o n that mat h e m at i c s c o nsi st s of a co llect io n of " mo d e l pro bl e ms" , an d that the go al of mat h e mat i c s educatio n is to teach these " mo d e l pro bl e ms" an d their so l ut i o ns, so that the st ude nts can so l ve mat h e mat i c al pro bl e ms that ar e exam p l e s of these " mo d e l pro bl e ms" . One of the go al s of MAE 301 /501 is to di sabuse people of this no t i o n. Wh i l e we can' t re all y say what mat h e mat i c s is, we can gi ve an ap p r o ximat e an s wer to the quest io n of what mat h e mat i c s is al l ab o u t . First of al l , there ar e mathematical objec t s, such as numbers, se t s , matrices, t riangles an d pro babi l i t i e s. Then there ar e func tio ns or proce sse s, such as ad d i n g two numbers, forming the co mplement of a se t , nd i ng the inve r s e of a no n- si ngular mat r i x, c o ns t ruc t i ng the me d i ans of a t riangle or writ i ng a formul a for the pro bability of a compound event. Finally, there ar e pro o fs or thoughts or so l ut i o ns to they mo r e or le ss c o mpri s e what mat h e m at i c i an s pro bl e ms; these ar e di - c ul t to de s c ri b e , an d do ; one imp o rt ant exam p l e wo u l d be to view the se t of al l func t i o ns fro m one se t to an o t h e r as a ne w mat hemat ic al o b j ect . Mat h e m at i c i a n s re all y do n' t li ke to go ar o u n d in ci rcle s, so we wi l l no t furt he r pu rs ue the quest io n of what mat h e mat i c s is, bu t rat h e r st art talking ab o u t mat h e mat i c al ob j ects, co nst ruct io ns an d ot her pro c e sse s, an d thoughts. We ar e go i n g to be pri mari l y mat h e mat i c al in this develo pment; that is, we' ll st art wi t h so me un de n e d ob j ects an d pro c e s s e s , an d then careful l y, an d lo gic ally, bu i l d up ot her ob j ects, an d pro c e sse s or o p erat io ns that wo r k wi t h them, even ot her kinds of o b j ect s an d ot her kinds of pro cesses. This de vel o pment will, to so me mi n o r extent, mi r r o r the hi s t o ri c al de vel o pment. 1 .2. Basic m at he m at i c al objects. First of al l , we ne e d so me kind of o b j ect , so met hi ng to talk ab o u t . The us u al ob j ects wi t h which mat h e mat i c i ans st art ar e the nat u ral numbers, N , an d there wi t h whi ch we co unt; that is, 1 ; 2 ; 3 ; 4 ; : : : . Not ice that we st art at 1 , there is no 0, ar e no n e gat i ve numbers. Associated wi t h the nat ural numbers, we have two pro c e sse s. 2 BERNARD MAS K I T First, we can co unt in clumps; that is, we can ad d numbers. Addition sat i se s the two rul e s : Co mmutativity of a ddit io n : For al l nat ural numbers a an d b , a + b = b + a ; an d Associativity of a ddit io n : For al l nat ural numbers a , b an d c , ( a + b ) + c = a + ( b + c ). Next we o b se rve that we can ad d in clumps, that is, mul t i pl y. Mul t i p l i c at i o n al s o sat i se s two ru l e s , which we call by the same name s : Co mmutativity of multiplica t io n: For al l nat ural numbers a an d b , ab = ba; an d Associativity of m u lt i p li c a t i o n : For al l nat ural numbers a; b; c , ( ab ) c = a ( bc). Question: Why ar e these ru l e s c o nc e rni n g di #erent op erations called by the same names? There is al s o a rul e , the di s t ri but i ve rul e , co ncerning the co nnect io n between these two operations: For al l nat ural numbers, a; b; c , a ( b + c ) = ( ab ) + ( ac). Problem 1.1. What ha ppens to this ru le if yo u in t e rchange a ddit io n and mu ltiplica t io n? 1 .3. Inve r s e o p er at io ns . Is there an inve r s e o p eratio n ( subt ract i o n) to ad d i t i o n ? Wh e n is it de ne d? That is, for whi ch a an d b can we so l ve the equatio n a x = b ? Problem 1 .2. Is the re a na t u ral numbe r a so that the eq ua t io n a x = b ca n always be so lved? Never be so lved? Problem 1 .3. Is the re a na t u ral nu m b e r b for whic h the eq ua t io n a x = b ca n always be so lved? Never be so lved? We do n' t have the to ols to prove it , bu t we know that subt ract i o n is al ways un i q ue ; that is, if a = b + x an d a = b + y , then x = y . We can l i kewi se as k the quest io n: Is there an inve r s e op eration ( divisio n) to mul t i pl i c at i o n ? That is, can we so l ve the equatio n ax = b for x . Wh e n can we so l ve this equatio n? Problem 1.4. Is the re a na t u ral nu m b e r a so that the eq u a t io n ax = b always ha s a so lutio n? Never ha s a so lutio n? Problem 1.5. Is the re a na t u ral numbe r b for whic h the eq u a t io n ax = b always ha s a so lut io n? Never ha s a so lut io n? We al s o do n' t have the to ols to prove that di v i si o n is al ways uniq ue ; that is, if a = bx an d a = by, then x = y .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    38 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us