Transistor Counts

Transistor Counts

EE241 - Spring 2007 Advanced Digital Integrated Circuits Lecture 2: Scaling Trends Some Recent Devices In production: In research: 65nm strained Si 10nm device Lg = 10 nm Corresponds to sub-22nm node (>10 years) 2 1 Some Recent Devices Intel’s 30nm transistor, circa 2002 Ion = 570μm/μm Ioff = 60nA/ μm [B. Doyle, Intel] 3 More Recent Devices Intel’s 20nm transistor, circa 2002 @0.75V [B. Doyle, Intel] 4 2 More Recent Devices Ultra-Thin-Body (UTB) MOSFET SOI: Silicon-on-Insulator [Choi, UCB] 5 18nm FinFET Double-gate structure + raised source/drain 400 -1.50 V Gate 350 Gate 300 -1.25 V Source Drain 250 -1.00 V Silicon 200 Fin [uA/um] -0.75 V BOX d Si fin - Body! I 150 -0.50 V 100 -0.25 V 50 0 X. Huang, et al, 1999 IEDM, p.67~70 -1.5 -1.0 -0.5 0.0 Vd [V] 6 3 Sub-5nm FinFET Lee, VLSI Technology, 2006 7 Major Roadblocks 1. Managing complexity How to design a 10 billion transistor chip? And what to use all these transistors for? 2. Cost of integrated circuits is increasing It takes >$10M to design a chip Mask costs are more than $3M in 45nm technology 3. The end of frequency scaling - Power as a limiting factor Dealing with leakages 4. Robustness issues Variations, SRAM, soft errors, coupling 5. The interconnect problem 8 4 Transistor Counts Transistor Counts in Intel's Microprocessors 1000 Itanium II 100 Pentium 4 Core2 ] Pentium II Itanium 10 Pentium Pro Pentium III Pentium Pentium MMX 486DX 1 486DX4 80286 386DX 0.1 8086 8088 Transistors [in millions [in Transistors Doubles every 2 years 0.01 8008 8080 4004 0.001 1970 1975 1980 1985 1990 1995 2000 2005 9 Frequency Frequency Trends in Intel's Microprocessors 10000 Pentium 4 Core2 Pentium III 1000 Itanium II Itanium Pentium II Pentium Pro 100 Pentium Pentium MMX 486DX 486DX4 80286 10 8086 386DX Frequency [MHz] 8088 Has been doubling 1 8080 every 2 years, 8008 but is now slowing down 0.1 4004 1970 1975 1980 1985 1990 1995 2000 2005 10 5 Power Dissipation Power Trends in Intel's Microprocessors 1000 Has been > doubling Itanium II Core 2 100 every 2 years Itanium Pentium 4 Pentium III Pentium Pro 10 Pentium Pentium II 80286 486DX Power [W] Power 8086 8088 1 386DX Has to stay 8008 8080 ~constant 4004 0.1 1970 1975 1980 1985 1990 1995 2000 2005 11 Active Power Scaling 1 1. If Vcc = 0.7, and Freq = ( ), 0.7 1 1 Power = CV 2 f = ( × 1.14 2 ) × (0.7 2 ) × ( ) = 1.3 0.7 0.7 2. If Vcc = 0.7, and Freq = 2, 1 Power = CV 2 f = ( × 1.14 2 ) × (0.7 2 ) × (2) = 1.8 0.7 3. If Vcc = 0.85 , and Freq = 2, 1 Power = CV 2 f = ( × 1.14 2 ) × (0.85 2 ) × (2) = 2.7 0.7 12 6 Microprocessor power 100 P6 Pentium ® proc 10 486 8086 286 386 8085 1 8080 Power (Watts) 8008 4004 0.1 S. Borkar 1999 1971 1974 1978 1985 1992 2000 Year LeadLead MicroprocessorsMicroprocessors powerpower continuescontinues toto increaseincrease 13 Power Will Be a Problem 100000 18KW 10000 5KW 1.5KW 1000 500W Pentium® proc 100 286 486 10 8086 386 Power (Watts) 8085 8080 8008 1 4004 S. Borkar 1999 0.1 1971 1974 1978 1985 1992 2000 2004 2008 Year PowerPower deliverydelivery andand dissipationdissipation willwill bebe prohibitiveprohibitive 14 7 Power Density Will Increase 10000 Sun’s Surface 1000 Rocket Nozzle Nuclear Reactor 100 8086 10 4004 Hot Plate P6 Power Density (W/cm2) Power Density 8008 8085 386 Pentium® proc 286 8080 486 S. Borkar 1 1999 1970 1980 1990 2000 2010 Year PowerPower densitydensity tootoo highhigh toto keepkeep junctionsjunctions atat lowlow temptemp 15 Power Delivery Challenges 1,000.00 1.E+07 1.E+06 100.00 1.E+05 1.E+04 10.00 P6 1.E+03 P6 Pentium® proc 1.E+02 8086 1.E+01 8086 Pentium® proc Icc (amp) Icc 1.00 386 386 486 486 L(di/dt)/Vdd 1.E+00 8080 286 8080 286 0.10 1.E-01 8085 8085 1.E-02 4004 8008 4004 1.E-03 8008 0.01 1.E-04 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 Year Year S. Borkar HighHigh supplysupply currentscurrents atat lowlow voltage:voltage: Challenges:Challenges: IRIR dropdrop andand L(di/dt)L(di/dt) noisenoise 16 8 The Power Challenge: Hottest chips published in ISSCC 1000 rs yea .4 / 3 100 x1 rs a e 10 y 3 / 4 x 1 Power per chip [W] 0.1 MPU DSP 0.01 1980 1985 1990 1995 2000 Year T. Kuroda, Keio University 17 Moore’s Law - Logic Density 1000 2 2x trend 100 Pentium II (R) 486 Pentium Pro (R) 10Logic Density 386 Pentium (R) i860 Logic Transistors/mm Logic Source: Intel Source: 1 S. Borkar 1.5μ 1.0μ 0.6μ 0.8μ 0.35μ 0.25μ 0.18μ 0.13μ ShrinksShrinks andand compactionscompactions meetmeet densitydensity goalsgoals NewNew micro-architecturesmicro-architectures dropdrop densitydensity 18 9 Die Size Growth 100 P6 486 Pentium ® proc 10 386 286 8080 8086 Die size (mm) 8085 ~7% growth per year 8008 4004 ~2X growth in 10 years S. Borkar 1 1970 1980 1990 2000 2010 Year DieDie sizesize growsgrows byby 14%14% toto satisfysatisfy Moore’sMoore’s LawLaw 19 Not Everything Scales G.E. Moore, ISSCC’03 20 10 Optical Lithography Issues Sub-wavelength lithography 1 1000 Lithography 365nm Wavelength 248nm 193nm nm micron 180nm 0.1 130nm Gap 100 90nm 65nm Generation 45nm 32nm 13nm EUV 0.01 10 1980 1990 2000 2010 2020 Source: Mark Bohr, Intel 21 Mask Costs 2500 45nm 2000 1500 65nm 1000 90nm Cost [in $1000] 0.13 μm 500 0.18 μm 0.25 μm 0 1996 1998 2000 2002 2004 2006 2008 Year MaskMask costscosts followfollow Moore’sMoore’s lawlaw asas wellwell 22 11 FAB Costs $100,000 Litho Cost $10,000 $1,000 $100 $10 Litho Tool Cost ($K) Tool Cost Litho G. Moore ISSCC 03 $1 1960 1970 1980 1990 2000 2010 $10,000 FAB Cost $1,000 $100 $10 Fab Cost ($M) Cost Fab www.icknowledge.com $1 1960 1970 1980 1990 2000 201023 Cost Increases Lithography is more complex Like “painting a 1cm line with a 3cm brush” 193nm laser Immersion Cost of exposure system Cost of proximity correction, phase shift masks Cost of mask repair But – mask costs drop in subsequent years Economic settings for maskless lithography Design costs increase with added complexity Chip starts ~$10M 24 12 Process Variations Control of minimum features does not track feature scaling Relative device/interconnect variations increase Sources: Lithography Feature size, oxide thickness variations Random dopant fluctuations Effects: Speed Power, primary leakage Yield 25 The Interconnect Scare 26 13 Technology Features EE 141 Technology vs. 45nm FEOL FEOL 0.25μm features 45nm technology Lg = 22μm Lg = 25nm 248nm lithography 192nm immersion lithography No OPC, liberal design rules OPC, restricted design rules SiO2 oxide, 3.5nm SiO2 oxide, 1.1nm 106 dopant atoms <103 dopant atoms Nobody knew what is ‘strain’ Strained silicon in channel Velocity saturated Velocity saturated No SD leakage IDS,off ~ 100nA No gate leakage Ig ~ 10nA One transistor flavor Many transistor flavors BEOL BEOL Al interconnect Cu interconnect SiO2 ILD Lo-k ILD 4-5 M layers 8-10 M layers No CMP, no density rules CMP, density rules 28 14 Strained Silicon PMOS High NMOS Stress Film SiGe SiGe Compressive channel strain Tensile channel strain 30% drive current increase 10% drive current increase in 90nm CMOS in 90nm CMOS 29 Strained Silicon No strain Strained Si VDD VDD M2 W2 = 2 M2 W = 1.6 In Out 2 In Out M1 W1 = 1 M1 W1 = 1 30 15 Next Lecture Device and gate models 31 16.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    16 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us