JICA’s Approach of Climate Change and Adaptation Towards wise management of water and land We are twins in Asia What is JICA ? Japan International Cooperation Agency Official Development Assistance (ODA) Reform: New JICA start in Oct. 08 GrantGrant Aid Aid MOFA GrantGrant NewNew Technical bilateral Technical bilateral AssistanceAssistance JICAJICA assistanceassistance JICA October, ODAODA YenYen loansloans 2008 - JBIC multilateralmultilateral internationalinternational assistanceassistance organizationsorganizations Contents 1. Cool Earth 50 and Cool Earth Partnership 2. Adaptation strategy for Climate Change in Water Sector inside Japan 3. JICA’s Approach on Climate Change 4. JICA’s support to adaptation measures in highly vulnerable countries, regions, and areas ¾ Nepal: Glacial Lake Outburst Floods (GLOF) ¾ Tuvalu: Project Formulation in Climate Change ¾ Philippines: Water and land management ¾ Kenya: Community-based adaptation ¾ Capacity Development 1. Cool Earth 50 and Cool Earth Partnership 1.Cool Earth 50 and Cool Earth Partnership -Halving Global Emissions by 2050- MOFA 1.Cool Earth 50 and Cool Earth Partnership -Providing support on a scale of US$ 10 bill.- MOFA 1.Cool Earth 50 and Cool Earth Partnership -Supporting efforts to reduce emissions while achieving growth Up to US$ 2 billion Developing Transfer Japanese Up to US$ 8billion technology and Assistance for adaptation & countries Assistance for promote GHGs improved access to clean energy (according to mitigation policy dialogue) emission reductions at global level Grant aid Vulnerable (e.g.) Improving energy “Cool Earth countries efficiency of power ODA loan” Technical generation (US$4.5billion) Assistance Assistance through International Contribution international organizations (Note 1) Eligible countries organizations to ODA loan Adaptation, and improved Other public funds Projects Private sector activities access to clean energy. and funds To promote sustainable JBIC development Encourage private finance and promote NEXI (e.g.) technology transfer Forest conservation, (Note 1) Japan will also make efforts NEDO to create a new multilateral fund together disaster management, (Note 2) etc. rural electrification by solar Other funds with US and UK, and call on other donors to join it. and small hydro (Note 2) New Energy and Industrial Technology Development Organization 2. Adaptation Strategy in water sector for Climate Change in Japan 1. Present conditions Japan is vulnerable to climate change in Japan Kinki Region: Osaka Kanto Region: Tokyo A y S Ikebukuro a h s i e n Station n Ueno R a i k Station v a iver S e Kameido aki R u R Kanz Ka r n m da i Amagasaki Ri Station v vei d r e Shin-Osaka Station r Station Tokyo a Shinjuku Kinsicyo R Old Edo River Edo Old Station i Station Station v e r Ara River Shibuya Osaka Station Neya River Shibu Station ya Ri Yodo River M ver Osaka Castle e Hirano gu ro Tennouji Station River R Toneiv River er Elevation Elevation 3m – 4m 3m – 4m 1m – 3m 1m – 3m 0m – 1m 0m – 1m About 50% of population and about 75% of property -1m – 0m -1m – -1m – 0m -1m – on about 10% of land lower than water levels in rivers Water Area Water Area during flooding 2. Impacts of Climate change prediction models heavy rains 気候変動の予測を行うモデルResolution of climate change prediction modelsの解像度は年々進歩 has been improved year by year. IPCC1次報告書(1990)IPCC First Assessment Report (1990): Horizontal水平解像度 resolution 約of about500km 500 km IPCC2次報告書(1996)IPCC Second Assessment Report (1996): Horizontal resolution of about 250水平解像度 km 約250km IPCCIPCC3次報告書(2001) Third Assessment Report (2001): Horizontal水平解像度 resolution of 約 about180km 180 km IPCC4次報告書(2007)IPCC Fourth Assessment Report (2007): Horizontal resolution of about 110水平解像度 km 約110km GCM20GCM20 and RCM20:、RCM20 Horizontal resolution of about 20 km ※メッシュの大きさを表現したもので、実際のメッシュ箇所とは関係ないMesh sizes are simply indicated regardless of actual mesh locations. 水平解像度 約20km Prediction model 河川局作成in this study 2. Impacts of Estimation of increased rainfall by region heavy rains Future rainfall amounts were projected as a median value in each region of Average rainfall in 2080-2099 period Average rainfall in 1979-1998 period ② The above equation was obtained based on the ① maximum daily precipitation in the year at each survey point identified in GCM20 (A1B scenario). ① Hokkaido 1.24 ④ ② Tohoku 1.22 ③ ③ Kanto 1.11 ⑧ ⑤ ④ Hokuriku 1.14 ⑥ ⑤ Chubu 1.06 ⑨ ⑥ Kinki 1.07 ⑦ ⑩ Legend Southern Kii ⑦ 1.13 ⑪ 1.20∼1.25 ⑧ San-in 1.11 1.15∼1.20 ⑨ Setouchi 1.10 1.10∼1.15 Southern 1.05∼1.10 ⑩ Shikoku 1.11 1.00∼1.05 ⑪ Kyushu 1.07 2. Impacts of Declining safety level against floods heavy rains Return period of flood is declining by increasing rainfall. 【Image of declining return period】 Maximum daily rainfall 1.2 return period × current future 1/100 current data projected data 1/ 50 RainfallRainfall probabilityprobability sheetssheets r rainfall 2. Impacts of Declining safety level against floods heavy rains Impact for flood safety level after 100 years 1/200 (CurrentTarge )1/150(CurrentTarge ) 1/100( CurrentTarge ) t t Region Future floodt safety level(annual exceedance probability) Flood safetylevel Number of Number of Number of 200 river system river system river system 175 Hokkaido - - 1/40~1/70 2 1/25~1/50 8 Tohoku - - 1/22~1/55 5 1/27~1/40 5 150 Kanto 1/90~1/120 3 1/60~1/75 2 1/50 1 125 Hokuriku - - 1/50~1/90 5 1/40~1/46 4 100 Cyubu 1/90~1/145 2 1/80~1/99 4 1/60~1/70 3 75 Kinki 1/120 1 - - - - 50 Southern Kii - - 1/57 1 1/30 1 25 Saninn - - 1/83 1 1/39~ 1/63 5 0 計 北 東 関 北 中 近 紀 山 瀬 四 九 Kinki Kanto Hokuriku Cyubu Hokkaido Tohoku Saninn Southern Kii Southern Setouchi Kyuusyuu Current Target Current Setouchi 1/100 1 1/82~1/86 3 1/44~ 1/65 3 画 海 北 東 陸 部 畿 伊 陰 戸 Shikoku 国Southern 州 Southern Shikoku - - 1/56 1 1/41~ 1/51 3 道 ③ ② ① 南 内 南 ① ③ Kyusyu - - 1/90~ 1/100 4 1/60~ 1/90 14 ② 部 ① 部 All Japan 1/90~1/145 7 1/22~ 1/100 28 1/25~ 1/90 47 ① Flood safetylevel Flood safetylevel 150 100 125 75 100 75 50 50 25 25 0 Kinki 0 Kanto 計 関 Cyubu 近 紀 瀬 四 九 北 東 Hokuriku 北 中 山 Saninn Shikoku Southern 計 関 近 紀 九 Hokkaido 北 東 北 中 山 瀬 四 Tohoku Southern Kii Southern Kyuusyuu Setouchi Current Target Current Kinki Kanto Cyubu Hokuriku Saninn Shikoku Southern Hokkaido Tohoku Southern Kii Southern Kyuusyuu Setouchi Current Target Current 画 海 北 東 陸 部 畿 伊 陰 戸 国 州 画 海 北 東 陸 部 畿 伊 陰 戸 国 州 道 ⑤ ② ⑤ ④ 南 ① 内 南 ④ 道 ⑤ ① ④ ③ 南 ⑤ 内 南 ⑭ ① ③ ② ⑧ 部 ⑤ ③ 部 ② ④ 部 ③ 部 ⑤ ① ③ ⑤ ③ ① ④ ⑧ ① ③ ① ③ ① ① ⑭ ⑤ ② ① ④ ※ Circled number is number of calculated river system 2. Impacts of Changes of peak flood runoff heavy rains Future rainfall: ×1.0 ∼1.5 Peak runoff : ×1.0 ∼1.7 計画降雨量の増加と基本高水のピーク流量の変化 Design Rainfall ×1.0 ×1.1 ×1.2 ×1.3 ×1.5 Ishikari石狩川 Riv. Design target Level Basin Area Peak Runoff of Design Flood (Hokkaido)(北海道) 1/150 12,697km2 18,000 m3/s 20,500 23,000 25,600 30,700 北上川 Kitakami Riv. 1/150 7,070km2 13,600 m3/s (Tohoku)(東北) 15,700 17,800 19,900 24,000 Tone利根川 Riv. About 21,000 m3/s 1/200 5,114km2 23,600 25,900 27,900 31,800 (Kanto)(関東) (Calculated by 1/200) 黒部川 Kurobe Riv. 1/100 km2 7,200 m3/s (Hokuriku)(北陸) 667 8,100 8,900 9,700 11,300 Izumo雲出川 Riv. 2 3 (Cyubu)(中部) 1/100 541km 8,000 m /s 9,000 9,900 10,900 12,800 紀の川 Kinokawa Riv. 1/150 2 3/ (Kinki)(近畿) 1,574km 16,000 m s 17,600 19,700 21,600 25,400 Oota太田川 Riv. (Cyugoku)(中国) 1/200 1,505km2 12,000 m3/s 13,100 14,700 16,300 19,400 Naga那賀川 Riv. (Shikoku)(四国) 1/100 765km2 11,200 m3/s 12,800 14,500 16,100 19,300 Kase嘉瀬川 Riv. 2 3 (Kyusyu)(九州) 1/100 225.5km 3,400 m /s 3,800 4,100 4,500 5,300 0% 20% 40% 60% 80% 100% 120% 140% 160% 180% 3. Impacts of More frequent and serious droughts droughts After 100 years, rainfall decrease in March - June Reduction of river flow in periods requiring most irrigation water, during surface soil puddling in paddy fields, may deteriorate water use for rice farming. Legend ≧ 1.4 1.2- 1.4 1.0 - 1.2 0.8- 1.0 < 0.8 Comparison between present Spring (March through June) conditions(1979 to 1998) and future rainfall(2080 to 2099) in Class A rivers Source: Water Resources in Japan 2007, Land and Water Bureau, Ministry of Land, Infrastructure and Transport More frequent and serious droughts 3. Impacts of Snow fall pattern will change droughts In the upper Tone River (i) earlier snow melt and (ii) reduction of -snow cover will decrease snowfall changes in river flow rate, and -reduction of river flow rate (iii) earlier surface soil puddling in paddy fields in early spring is expected to change annual water demand pattern, and to have serious impacts on water use. ChangeChange inin snowsnow covercover inin 100100 years (Fujiwara) (ii) Reduction of (i) Earlier discharge due to 300 years (Fujiwara) earlier snow melt 平均Average river flow rate 250 将来Future Reduction of river flow during 200 surface soil puddling in paddy 積 fields 雪 150 /sec) 深 3 Future Present現況 (cm )100 将来 Snow cover cover (cm)Snow 50 River flow (m 0 (iii) Insufficient river flow for large amounts 10月1日Oct 11月1日Nov 12月1日Dec Jan 1月1日Feb 2月1日 3月1日Mar 4月1日Apr May 5月1日 1 of irrigation *Prepared by Ministry of Land, Infrastructure and Transport based on Regional Climatic Model (RCM) 20, a global warming January April Surface soil July October prediction model, developed by Japan Meteorological Agency.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages66 Page
-
File Size-