Optimal configuration for a bio-solar-wind polygeneration system in Klintehamn Caroline Algarp Astrid Svanfeldt Bachelor of Science Thesis KTH School of Industrial Engineering and Management Energy Technology EGI-2019 TRITA-ITM-EX 2019:318 SE-100 44 STOCKHOLM Abstract This project concentrates on the energy flows of Klintehamn and examines if it is possible for Klintehamn to be self-sufficient in the future. To reach this goal, the energy flows in Klintehamn must be analyzed. Subsequently, a new improved energy flow has been designed, where other renewable energy sources are included. Klintehamn is an urban area on the Swedish island of Gotland. An industrial park is es- tablished in the harbour of Klintehamn, and currently a sawmill, a fodder production facility and a few wind turbines are located in the area. A program, Program Klintehamn 2030, outlines opportunities to develop Klintehamn in many areas. The goals for Klintehamn are to increase the use of renewable energy sources and decrease greenhouse gas emissions. More specifically, this includes building a biogas plant by evolving the already established sewage treatment plant, and increasing the use of renewable energy sources such as wind and solar energy. Models of the Current Energy System and the Improved Energy System have been designed during the project. Calculations of the Current Energy System have been made and for the Improved Energy System, seven scenarios have been constructed. The calculations program, Matlab, has been used for all calculations. The following scenarios have been modeled in this project: • Scenario 1 - Development of biogas • Scenario 2 - Increased wind power • Scenario 3 - Development of solar park • Scenario 4 - Development of solar panels • Scenario 5 - Combination 1, scenario 1-4 added into one system • Scenario 6 - Combination 2, 100% renewable energy • Scenario 7 - Combination 3, development of Scenario 5, with more renewable energy In the Current Energy System, the total yearly energy demand is 3.423 TWh, where 3.405 TWh is electricity and 18.2 GWh is heat. The future demand of electricity and heat will be 3.407 TWh and 265 GWh per year, respectively. Scenario 5 is the first combined scenario, where the current energy and all renewable energy sources are included. The generated elec- tricity in that scenario is not enough to satisfy the electricity demand. Scenario 6 consists of 100% renewable energy sources. To achieve the energy demand of Klintehamn all the renew- able energy sources have been maximized in order to become self-sufficient. It generated an absurd result, which was far from realistic. Scenario 7 is an expansion of Scenario 5 but with more renewable energy. All energy sources have been expanded and Scenario 7 generates 108 GWh of electricity. Scenario 5 and Scenario 7 are two reasonable scenarios with reasonable amounts of renewable energy installed, but with different levels of ambition. The conclusion of the project is that, it is possible to improve the current energy system. The energy system can become more sustainable and fossil energy sources can be removed and replaced by renewable energy sources. In order for Klintehamn to be self-sufficient, more energy sources must be included, for example wave power. Sammanfattning Det h¨arprojektet handar om energifl¨odeti Klintehamn och hur Klintehamn i framtiden ska kunna bli sj¨alvf¨ors¨orjande. F¨oratt kunna g¨oradetta m˚astedagsl¨agetsenergifl¨odei Klinte- hamn utverderas. D¨arefter har ett nytt f¨orb¨attratenergifl¨odekonstruerats, d¨arandra f¨orny- bara energik¨allor¨arinkluderade. Klintehamn ¨aren t¨atortp˚aden svenska ¨onGotland. En industripark ¨aretablerad i Klinte- hamns hamnomr˚ade,och f¨orn¨arvarande ¨arett s˚agverk, en foderproduktionsanl¨aggning samt ett f˚atalvindkraftverk befentliga i omr˚adet. Ett program, Program Klintehamn 2030, har tagits fram, d˚adet finns m¨ojligheteratt utveckla Klintehamn p˚am˚angaomr˚aden.M˚al,f¨or att Klintehamn ska ¨oka anv¨andandeav f¨ornyelsebar energi och s¨anka sina koldioxidutsl¨app i framtiden, har utvecklats. N˚agraspecifika m˚al¨aratt det ska byggas en biogasanl¨agningi anknytning till det befintliga reningsverket, samt att ut¨oka anv¨andningenav f¨ornybara en- ergik¨allors˚asom vind och solenergi. Modeller p˚adagens energisystem och ett utvecklat energysystem i framtiden har konstruer- ats under projektets g˚ang.D¨arefterhar ber¨akningar av dagens energisystem gjorts och f¨or framtida systemet har ett antal scenarion byggts upp och ber¨aknatsp˚a.Alla ber¨akningarhar gjorts med hj¨alpav ber¨akningsprogrametMatlab. Scenariona i detta projekt ¨arf¨oljande: • Scenario 1 - Utveckling av biogas • Scanario 2 - Ut¨okningav vindkraften • Scenario 3 - Utveckling av solpark • Scenario 4 - Utveckling av solpaneler • Scenario 5 - Kombination 1, scenario 1-4 adderat till ett system • Scenario 6 - Kombination 2, 100% f¨ornybar energi • Scenario 7 - Kombination 3, uteveckling av Scenario 5, med mer f¨ornyelsebar energi I det nuvarande energisystemet ¨arden totala ˚arligaefterfr˚aganav energi 3.423 TWh, varav 3.405 TWh ¨arelektricitet och 18.2 GWh ¨arv¨arme.Den framtida efterfr˚aganav electricitet och v¨armekommer vara 3.407 TWh respektive 265 GWh per ˚ar. Scenario 5 ¨ardet f¨orstakombin- erade scenariot, d¨aralla f¨ornybara energik¨allor¨arinkluderade. Den genererade elektriciteten i det scenariot ¨arinte tillr¨akligf¨oratt n˚aefterfr˚agan. Scenario 6 best˚arav 100% f¨orny- bara energik¨allor. F¨oratt uppn˚aKlintehamns energibehov har alla f¨ornybara energik¨allor maximerats f¨oratt kunna bli sj¨alvf¨ors¨orjande. Det genererade ett absurt resultat, som var l˚angtfr˚anrimligt. Scenario 7 ¨aren p˚abyggnad av Scenario 5, med ¨annu mer f¨ornyelsebar energi. Alla energik¨allorhar ut¨okats och Scenario 7 genererar 108 GWh elektricitet. Sce- nario 5 och Scenario 7 ¨artv˚arimliga scenarion med rimliga m¨angderf¨ornybara energik¨allor installerade, men med olika ambitionsniv˚aer. S˚aslutsatsen av projektet ¨aratt det g˚aratt f¨orb¨attradet nuvarande energisystemet. En- ergysystemet kan bli mer h˚allbartoch fossila energik¨allorkan fasas ut och i stor utstr¨ackning ers¨attasmed f¨ornybara energik¨allor.F¨oratt Klintehamn ska kunna bli sj¨alvf¨ors¨orjandem˚aste fler energik¨allorinkluderas, till exempel v˚agkraft. Contents 1 Introduction 1 1.1 Aim . .1 1.2 Providers and energy users in Klintehamn . .1 1.2.1 Klintehamn . .2 1.2.2 Fodder production plant . .2 1.2.3 Foodmark-Rydbergs . .3 1.2.4 Harbour . .3 1.2.5 Sawmill . .4 1.3 Renewable Energy Sources . .4 1.3.1 Polygeneration . .5 1.3.2 Biogas . .5 1.3.3 Solar . .5 1.3.4 Wind . .6 2 Methodology 7 2.1 Limitations and assumptions . .7 2.2 Calculations and formulas . .8 2.3 Model . .9 2.3.1 Current Energy System . .9 2.3.2 Improved Energy System . 10 2.4 Energy scenarios . 11 3 Results 12 3.1 Today ........................................ 12 3.2 Future scenarios . 15 3.2.1 Scenario 1: Biogas . 15 3.2.2 Scenario 2: Increased wind power . 17 3.2.3 Scenario 3: Solar park . 18 3.2.4 Scenario 4: Solar panels . 19 3.3 Combined scenarios . 20 3.3.1 Scenario 5: Combination 1, Scenario 1-4 added into one system . 21 3.3.2 Scenario 6: Combination 2, 100 % renewable energy . 23 3.3.3 Scenario 7: Combination 3, an extension of Scenario 5 to achieve the energy demand of Klintehamn . 24 3.4 Sensitivity analysis . 25 4 Discussion 26 4.1 Sustainability analysis . 26 4.2 Scenarios . 26 4.2.1 Today . 26 4.2.2 Future . 27 4.2.3 Combinations . 27 4.3 Issues and problems . 28 4.4 Further research . 29 4.5 Conclusion . 29 Appendices 32 List of Figures 1 Outgoing and incoming goods from the harbour . .3 2 Model of the current energy system. .9 3 Model of the energy system in the future. 10 4 Current electricity flow. 13 5 Current heat flow. 14 6 Electricity flow in Scenario 1 ........................... 15 7 Heat flow in Scenario 1-7 ............................. 16 8 Electricity flow in Scenario 2 ........................... 17 9 Electricity flow in Scenario 3 ........................... 18 10 Electricity flow in Scenario 4 ........................... 19 11 Electricity flow in Scenario 5 ........................... 21 12 Electricity flow without the sawmill in Scenario 5 ............... 22 13 Electricity flow in Scenario 6 ........................... 23 14 Electricity flow in Scenario 7 ........................... 24 List of Tables 1 Concluded result from the current energy system calculations . 12 2 Concluded result from the electricity in Scenario 1-5 .............. 20 3 Concluded result from the electricity in Scenario 6 ............... 20 4 Concluded result from the electricity in Scenario 7 ............... 20 Nomenclature Abbreviations CSP Concentrated solar power PV Photovoltaic Other Symbols m3fub Real volume of timber without bark m3s External volume off chippings 1 Introduction Gotland is the largest island of Sweden with a population of 59,249 people (SCB, 2019). The opportunity to create a sustainable energy system at the island is possible. Renewable energy production, like wind, solar and biomass, has the potential to expand on the island (Energimyndigheten, 2018). To develop the sustainable energy system, Region Gotland plans to use an already established industrial park in the harbour of Klintehamn to apply for the EU Horizon 2020 project (Project description, 2019). To make this possible Program Klintehamn 2030 has been developed. The program con- tains strategies and several goals to facilitate the planning of the structure of Klintehamn. One of the nine main sections of the program focuses on the harbour and the industries. The program contains information about the different industries of Klintehamn and some suggestions of how the energy system will change when other technologies (e.g. biogas plant) are established in Klintehamn. To reach the goals of the program, the energy system of Klintehamn must be improved, and the degree to which the city can be self-sufficient must be examined.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages44 Page
-
File Size-