Effect of Non-Idealities – Bilinear Switched-Capacitor Filters – Filter Design Summary • Comparison of Various Filter Topologies • Data Converters

Effect of Non-Idealities – Bilinear Switched-Capacitor Filters – Filter Design Summary • Comparison of Various Filter Topologies • Data Converters

EE247 Lecture 11 • Switched-Capacitor Filters (continued) – Effect of non-idealities – Bilinear switched-capacitor filters – Filter design summary • Comparison of various filter topologies • Data Converters EECS 247 Lecture 11: S.C. Filters/ Data Converters © 2006 H. K. Page 1 Summary Last Lecture • Switched-capacitor filter design considerations – DDI & LDI Integrator characteristics – Bottom-plate LDI integrator Æ overcomes parasitic sensitivity issues – Continuous-time and complex conjugate terminations – Use of T-networks to implement high capacitor ratios • Switched-capacitor filters utilizing double sampling technique • Effect of non-idealities – Opamp finite gain – Opamp finite bandwidth – Finite slew rate of the opamp (this lecture) EECS 247 Lecture 11: S.C. Filters/ Data Converters © 2006 H. K. Page 2 Switched-Capacitor Direct-Transform Discrete (DDI) Integrator C φ φ I 1 2 φ Vin φ 1 - 1 φ Cs Vo 2 + T=1/fs − Vo =−Cs × z 1 (z) − CI 1−z 1 Vin C =−s × −1 C1I z EECS 247 Lecture 11: S.C. Filters/ Data Converters © 2006 H. K. Page 3 DDI Switched-Capacitor Integrator C φ φ I 1 2 Vin φ - 1 Cs Vo + − Vo =−Cs ×z 1 = jTω (z)− , z e CI 1−z 1 Vin αα− − jT/2ω jj− =×CCss1 = ×e α =ee ωωω− since: sin CCII1−−eeejT jT/2 jT/2 2j − ω =−jeCs ×jT/2 × 1 CI 2sin()ωT/2 Cs 1 ωT/2 − jT/2ω =−ω × × e CjTI sin()ωT/2 ror se Er Ideal Integrator Magnitude Error Pha EECS 247 Lecture 11: S.C. Filters/ Data Converters © 2006 H. K. Page 4 DDI Switched-Capacitor Integrator C φ φ I 1 2 Vin φ - 1 Cs Vo + Example: Mag. & phase error for: sig 1- f max ./ fs = 1/12 Æ Mag. error = 1% or 0.1dB ω π π Phase error=- T/2= - f / fs= - /12 [radian] Æ 15 [degree] ω QintgÆ 1/( phase error @ ο in radian ) (Lecture 5 page 1) π Æ Qintg= -12/ = -3.8 2- f / fs=1/32 Æ Mag. error=0.16% or 0.014dB ω π π Phase error = T/2= - f / fs= - /32 [radian] Æ 5.6 [degree] π Qintg = -32/ = -10.2 DDI Integrator: Æ Magnitude error no problem Phase error major problem EECS 247 Lecture 11: S.C. Filters/ Data Converters © 2006 H. K. Page 5 LDI Switched-Capacitor Integrator C LDI (Lossless Discrete Integrator) Æ φ φ I 1 2 same as DDI but output is sampled ½ Vin φ clock cycle earlier - 2 LDI Cs Vo2 V − + o2 =−Cs ×z 1/2 = jTω (z)− , z e CI 1z− 1 Vin − ω =−CCse ×jT/2 = s × 1 −−+ωωω CCII1−−eeej T j T/2 j T/2 =−j Cs × 1 CI 2sin()ωT/2 Cs 1 ωT/2 =−ω × No Phase Error! CjTI sin()ωT/2 For signals at frequencies << sampling freq. Æ Magnitude error negligible Ideal Integrator Magnitude Error EECS 247 Lecture 11: S.C. Filters/ Data Converters © 2006 H. K. Page 6 Switched-Capacitor Integrator Parasitic Sensitivity C φ φ I 1 2 Vin - Vo Cp2 C Cs p3 + Cp1 Effect of parasitic capacitors: 1- Cp1 - driven by opamp o.k. 2- Cp2 - at opamp virtual gnd o.k. 3- Cp3 – Charges to Vin & discharges into CI Æ Problem parasitic sensitivity EECS 247 Lecture 11: S.C. Filters/ Data Converters © 2006 H. K. Page 7 Parasitic Insensitive Bottom-Plate Switched-Capacitor Integrator Sensitive parasitic cap. Æ Cp1 Æ rearrange circuit so that Cp1 does not charge/discharge φ 1=1 Æ Cp1 grounded φ 2=1 Æ Cp1 at virtual ground Cp2 Æ driven by a low impedance source φ φ CI 1 2 - C C s p1 Vo + Vi+ Cp2 Vi- Solution: Bottom plate capacitor integrator EECS 247 Lecture 11: S.C. Filters/ Data Converters © 2006 H. K. Page 8 Bottom Plate Switched-Capacitor Integrator φ φ φ CI 1 1 2 Vo1 - φ Cs 2 Vo + Vo2 Vi+ Vi- Output/Input z-Transform Vo1 Vo2 Note: on φ1 on φ2 − 1 Different delay from Vi+ & −1 2 Vi+ CCsszz Vi- to either output CC−−11 on φ1 II1z−− 1z Æ Special attention needed for input/output connections Vi- −1 −−CCssz12 on φ2 −− CCII1z−−11 1z EECS 247 Lecture 11: S.C. Filters/ Data Converters © 2006 H. K. Page 9 Bottom Plate Switched-Capacitor Integrator z-Transform Model φ φ CI φ 1 2 1 − −1 zz1 - 2 Vo1 −−C11φ 1z−−s 1z 2 Vo + Vo2 Vi+ −1 z12 − Input/Output−− z-transform Vi- 1z−−11 1z −1 Vi+ CCs I 2 −1 Vo1 z z 2 − −1 + 1 Vi- −CCs I 1z z 2 Vo2 LDI EECS 247 Lecture 11: S.C. Filters/ Data Converters © 2006 H. K. Page 10 LDI Switched-Capacitor Ladder Filter 1 +1 C C + s − s 2 z 2 CI CI z 1 − - + 2 − 1 z − 1 1 1 1 z 2 z 2 τ 1 sτ s 4 sτ5 −1 − −1 3 1z− 2 1z− + - + - z −1 1 − 1 − 1z − z 2 z 2 C Cs C 1 Cs − s − s + C CI CI z 2 CI I Delay around integrator loop is (z-1/2 . z+1/2 =1) Î LDI function EECS 247 Lecture 11: S.C. Filters/ Data Converters © 2006 H. K. Page 11 Effect of Opamp Nonidealities on Switched Capacitor Filter Behaviour • Opamp finite gain • Opamp finite bandwidth • Finite slew rate of the opamp • Non-linearities associated with opamp output/input characteristics EECS 247 Lecture 11: S.C. Filters/ Data Converters © 2006 H. K. Page 12 Effect of Opamp Non-Idealities Finite DC Gain φ φ CI 1 2 - Cs Vo + ≈− Cs 1 Vi+ H(s) fs DC Gain = a CI Cs 1 sf+×s Input/Output z-transform CaI Vi- −ω H(s) ≈ o s +×ω 1 o a ⇒ Qa≈ ÆFinite DC gain same effect in S.C. filters as for C.T. filters ÆIf DC gain not high enough Æ causes lowing of overall Q & droop in passband EECS 247 Lecture 11: S.C. Filters/ Data Converters © 2006 H. K. Page 13 Effect of Opamp Non-Idealities Finite Opamp Bandwidth V φ φ CI o settling 1 2 error - Cs Vo + φ Vi+ 2 Unity-gain-freq. Input/Output z-transform time Vi- = ft T=1/fs Assumption- Opamp Æ does not slew (will be revisited) Opamp has only one pole Æ exponential settling Ref: K.Martin, A. Sedra, “Effect of the OPamp Finite Gain & Bandwidth on the Performance of Switched- Capacitor Filters," IEEE Trans. Circuits Syst., vol. CAS-28, no. 8, pp. 822-829, Aug 1981. EECS 247 Lecture 11: S.C. Filters/ Data Converters © 2006 H. K. Page 14 Effect of Opamp Non-Idealities Finite Opamp Bandwidth V φ φ CI o settling 1 2 error - Cs Vo + φ Vi+ 2 Unity-gain-freq. Input/Output z-transform time Vi- = ft T=1/fs ⎡⎤−−C − ≈ 1e−+×kk eI Z 1 H(Z)H(Z)actual ideal ⎢⎥ ⎣⎦CCIs+ Cf where k =×π It × CCIss+ f fts→−−→Opamp unity gain frequency , f Clock frequency Ref: K.Martin, A. Sedra, “Effect of the OPamp Finite Gain & Bandwidth on the Performance of Switched- Capacitor Filters," IEEE Trans. Circuits Syst., vol. CAS-28, no. 8, pp. 822-829, Aug 1981. EECS 247 Lecture 11: S.C. Filters/ Data Converters © 2006 H. K. Page 15 Effect of Opamp Finite Bandwidth on Filter Magnitude Response |Τ| Τ| non-ideal /| ideal (dB) Example: For 1dB magnitude response deviation: fc /fs=1/32 Active RC 1- fc/fs=1/12 fc /fs=1/12 fc/ft~0.04 Æ ft>25fc 2- fc/fs=1/32 fc/ft~0.022 Æ ft>45fc 3- Cont.-Time fc/ft~1/700 Æ ft >700fc fc /ft EECS 247 Lecture 11: S.C. Filters/ Data Converters © 2006 H. K. Page 16 Effect of Opamp Finite Bandwidth on Filter Critical Frequency Example: Δω ω For maximum critical c / c frequency shift of <1% f /f =1/32 Active RC c s 1- fc/fs=1/32 fc/ft~0.028 fc /fs=1/12 Æ ft>36fc 2- fc/fs=1/12 fc/ft~0.046 Æ ft>22fc 3- Active RC C.T. filters fc/ft~0.008 Æ ft >125fc fc /ft Ref: K.Martin, A. Sedra, “Effect of the Opamp Finite Gain & Bandwidth on the Performance of SwitchedCapacitor Filters," IEEE Trans. Circuits Syst., vol. CAS-28, no. 8, pp. 822-829, Aug 1981. EECS 247 Lecture 11: S.C. Filters/ Data Converters © 2006 H. K. Page 17 Opamp Bandwidth Requirements for Switched- Capacitor Filters Compared to Continuous-Time Filters • Finite opamp bandwidth causes phase lag at the unity-gain frequency of the integrator for both type filters Æ Results in negative intg. Q & thus increases overall Q and gain @ results in peaking in the passband of interest • For given filter requirements, opamp bandwidth requirements much less stringent for S.C. filters compared to cont. time filters Æ lower power dissipation for S.C. filters (at low freq.s only) • Finite opamp bandwidth causes down shifting of critical frequencies in both type filters – Since cont. time filters are usually tunedÆ tuning accounts for frequency deviation – S.C. filters are untuned and thus frequency shift could cause problems specially for narrow-band filters EECS 247 Lecture 11: S.C. Filters/ Data Converters © 2006 H. K. Page 18 Sources of Distortion in Switched- Capacitor Filters • Distortion induced by finite slew rate of the opamp • Opamp output/input transfer function non- linearity- similar to cont. time filters • Distortion incurred by finite setting time of the opamp • Capacitor non-linearity- similar to cont. time filters • Distortion due to switch clock feed-through and charge injection EECS 247 Lecture 11: S.C.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    34 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us