Realtime Computer Graphics on Gpus Introduction

Realtime Computer Graphics on Gpus Introduction

Real-time Algorithms Programmable Pipeline History Summary Realtime Computer Graphics on GPUs Introduction Jan Kolomazn´ık Department of Software and Computer Science Education Faculty of Mathematics and Physics Charles University in Prague March 3, 2021 1 / 55 Real-time Algorithms Programmable Pipeline History Summary Real-time Algorithms 2 / 55 Real-time Algorithms Programmable Pipeline History Summary REAL-TIME ALGORITHMS I Time Constrains: I Hard limit I Soft limit I CG examples: I Video frame rate I Cinema – 24 Hz I TV – 25 (50) Hz, 30 (60) Hz I Video games – 30–60 Hz I Virtual reality – frame rate doubled I Haptic rendering – 1 kHz 3 / 55 Real-time Algorithms Programmable Pipeline History Summary REAL-TIME ALGORITHMS I Time Constrains: I Hard limit I Soft limit I CG examples: I Video frame rate I Cinema – 24 Hz I TV – 25 (50) Hz, 30 (60) Hz I Video games – 30–60 Hz I Virtual reality – frame rate doubled I Haptic rendering – 1 kHz 4 / 55 Real-time Algorithms Programmable Pipeline History Summary REAL-TIME ALGORITHMS I Time Constrains: I Hard limit I Soft limit I CG examples: I Video frame rate I Cinema – 24 Hz I TV – 25 (50) Hz, 30 (60) Hz I Video games – 30–60 Hz I Virtual reality – frame rate doubled I Haptic rendering – 1 kHz 5 / 55 Real-time Algorithms Programmable Pipeline History Summary REAL-TIME ALGORITHMS I Time Constrains: I Hard limit I Soft limit I CG examples: I Video frame rate I Cinema – 24 Hz I TV – 25 (50) Hz, 30 (60) Hz I Video games – 30–60 Hz I Virtual reality – frame rate doubled I Haptic rendering – 1 kHz 6 / 55 Real-time Algorithms Programmable Pipeline History Summary REAL-TIME ALGORITHMS I Time Constrains: I Hard limit I Soft limit I CG examples: I Video frame rate I Cinema – 24 Hz I TV – 25 (50) Hz, 30 (60) Hz I Video games – 30–60 Hz I Virtual reality – frame rate doubled I Haptic rendering – 1 kHz 7 / 55 Real-time Algorithms Programmable Pipeline History Summary HOW TO ACHIEVE SPEED I Optimal algorithm (time complexity ?) I Approximations vs. precision requirements I Tuning for specific hardware I Specialized tools for hot spots – GPUs 8 / 55 Real-time Algorithms Programmable Pipeline History Summary HOW TO ACHIEVE SPEED I Optimal algorithm (time complexity ?) I Approximations vs. precision requirements I Tuning for specific hardware I Specialized tools for hot spots – GPUs 9 / 55 Real-time Algorithms Programmable Pipeline History Summary HOW TO ACHIEVE SPEED I Optimal algorithm (time complexity ?) I Approximations vs. precision requirements I Tuning for specific hardware I Specialized tools for hot spots – GPUs 10 / 55 Real-time Algorithms Programmable Pipeline History Summary HOW TO ACHIEVE SPEED I Optimal algorithm (time complexity ?) I Approximations vs. precision requirements I Tuning for specific hardware I Specialized tools for hot spots – GPUs 11 / 55 Real-time Algorithms Programmable Pipeline History Summary WHY GPU? 12 / 55 Real-time Algorithms Programmable Pipeline History Summary Programmable Pipeline 13 / 55 Real-time Algorithms Programmable Pipeline History Summary PROGRAMMABLE PIPELINE Scene Description API I Boundary representation – vertices, edges, faces I Comunication (draw schedule, data transfers): App Primitive Processing VBOs $ GPU driver $ GPU Vertex Shader I Prepare inputs for the shader processing I Transform vertices into clip space Primitive Assembly ([x; y; z] 2 (−1; 1)3), bundle attributes (colors, normals) for further processing Rasterizer I Prepare primives for rasterization Early Depth Test I Process primitives from clip space, rasterize into screen space – generate fragments Fragment Shader I Custom fragment processing – lighting, texturing, . Per-Fragment Ops I Depth (Z-buffer) and stencil tests, color blending Framebuffer I Output image, Z-buffer, stencil buffer, double buffering, rendering to texture screen I Output on screen 14 / 55 Real-time Algorithms Programmable Pipeline History Summary PROGRAMMABLE PIPELINE Scene Description API I Boundary representation – vertices, edges, faces I Comunication (draw schedule, data transfers): App Primitive Processing VBOs $ GPU driver $ GPU Vertex Shader I Prepare inputs for the shader processing I Transform vertices into clip space Primitive Assembly ([x; y; z] 2 (−1; 1)3), bundle attributes (colors, normals) for further processing Rasterizer I Prepare primives for rasterization Early Depth Test I Process primitives from clip space, rasterize into screen space – generate fragments Fragment Shader I Custom fragment processing – lighting, texturing, . Per-Fragment Ops I Depth (Z-buffer) and stencil tests, color blending Framebuffer I Output image, Z-buffer, stencil buffer, double buffering, rendering to texture screen I Output on screen 15 / 55 Real-time Algorithms Programmable Pipeline History Summary PROGRAMMABLE PIPELINE Scene Description API I Boundary representation – vertices, edges, faces I Comunication (draw schedule, data transfers): App Primitive Processing VBOs $ GPU driver $ GPU Vertex Shader I Prepare inputs for the shader processing I Transform vertices into clip space Primitive Assembly ([x; y; z] 2 (−1; 1)3), bundle attributes (colors, normals) for further processing Rasterizer I Prepare primives for rasterization Early Depth Test I Process primitives from clip space, rasterize into screen space – generate fragments Fragment Shader I Custom fragment processing – lighting, texturing, . Per-Fragment Ops I Depth (Z-buffer) and stencil tests, color blending Framebuffer I Output image, Z-buffer, stencil buffer, double buffering, rendering to texture screen I Output on screen 16 / 55 Real-time Algorithms Programmable Pipeline History Summary PROGRAMMABLE PIPELINE Scene Description API I Boundary representation – vertices, edges, faces I Comunication (draw schedule, data transfers): App Primitive Processing VBOs $ GPU driver $ GPU Vertex Shader I Prepare inputs for the shader processing I Transform vertices into clip space Primitive Assembly ([x; y; z] 2 (−1; 1)3), bundle attributes (colors, normals) for further processing Rasterizer I Prepare primives for rasterization Early Depth Test I Process primitives from clip space, rasterize into screen space – generate fragments Fragment Shader I Custom fragment processing – lighting, texturing, . Per-Fragment Ops I Depth (Z-buffer) and stencil tests, color blending Framebuffer I Output image, Z-buffer, stencil buffer, double buffering, rendering to texture screen I Output on screen 17 / 55 Real-time Algorithms Programmable Pipeline History Summary PROGRAMMABLE PIPELINE Scene Description API I Boundary representation – vertices, edges, faces I Comunication (draw schedule, data transfers): App Primitive Processing VBOs $ GPU driver $ GPU Vertex Shader I Prepare inputs for the shader processing I Transform vertices into clip space Primitive Assembly ([x; y; z] 2 (−1; 1)3), bundle attributes (colors, normals) for further processing Rasterizer I Prepare primives for rasterization Early Depth Test I Process primitives from clip space, rasterize into screen space – generate fragments Fragment Shader I Custom fragment processing – lighting, texturing, . Per-Fragment Ops I Depth (Z-buffer) and stencil tests, color blending Framebuffer I Output image, Z-buffer, stencil buffer, double buffering, rendering to texture screen I Output on screen 18 / 55 Real-time Algorithms Programmable Pipeline History Summary PROGRAMMABLE PIPELINE Scene Description API I Boundary representation – vertices, edges, faces I Comunication (draw schedule, data transfers): App Primitive Processing VBOs $ GPU driver $ GPU Vertex Shader I Prepare inputs for the shader processing I Transform vertices into clip space Primitive Assembly ([x; y; z] 2 (−1; 1)3), bundle attributes (colors, normals) for further processing Rasterizer I Prepare primives for rasterization Early Depth Test I Process primitives from clip space, rasterize into screen space – generate fragments Fragment Shader I Custom fragment processing – lighting, texturing, . Per-Fragment Ops I Depth (Z-buffer) and stencil tests, color blending Framebuffer I Output image, Z-buffer, stencil buffer, double buffering, rendering to texture screen I Output on screen 19 / 55 Real-time Algorithms Programmable Pipeline History Summary PROGRAMMABLE PIPELINE Scene Description API I Boundary representation – vertices, edges, faces I Comunication (draw schedule, data transfers): App Primitive Processing VBOs $ GPU driver $ GPU Vertex Shader I Prepare inputs for the shader processing I Transform vertices into clip space Primitive Assembly ([x; y; z] 2 (−1; 1)3), bundle attributes (colors, normals) for further processing Rasterizer I Prepare primives for rasterization Early Depth Test I Process primitives from clip space, rasterize into screen space – generate fragments Fragment Shader I Custom fragment processing – lighting, texturing, . Per-Fragment Ops I Depth (Z-buffer) and stencil tests, color blending Framebuffer I Output image, Z-buffer, stencil buffer, double buffering, rendering to texture screen I Output on screen 20 / 55 Real-time Algorithms Programmable Pipeline History Summary PROGRAMMABLE PIPELINE Scene Description API I Boundary representation – vertices, edges, faces I Comunication (draw schedule, data transfers): App Primitive Processing VBOs $ GPU driver $ GPU Vertex Shader I Prepare inputs for the shader processing I Transform vertices into clip space Primitive Assembly ([x; y; z] 2 (−1; 1)3), bundle attributes (colors, normals) for further processing Rasterizer I Prepare primives for rasterization Early Depth Test I Process primitives from

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    55 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us